Engineering Center Five Farm Springs Farmington, CT 06032

Original Date:	2002-08-05			Document:	55661
Project	D324	CA	N/A	Sheet 1 of	213
Number:		Number:			
Dwg / Part No:	N/A			_	

Global Drive Operating Manual

This document contains technical data the export of which is restricted by the EAR, diversion contrary to U.S. law is prohibited. Proper authorization is required prior to providing this technical data to any other company, entity, person, or destination. U.S. ECCN: EAR99

DISTRIBUTION: Per notification document 53627. ORIGINAL APPROVAL:

Prepared By:		Approved By:	
(Last, F I typed)	(Signature and date)	(Last, F I typed)	(Signature and date)
Agirman, I.	İsmail Agirman 2/16/05	Czerwinski, C.	Chris Czerwinski 2/16/05
Brooks, W.	William F. Brooks 2/16/05		
Czerwinski, C.	Chris Czerwinski 2/16/05		
Izard, J.	Jeff M. Izard 2/16/05		
Mejias, N.	Noel Mejias 2/16/05		
Piedra, E.	Edward Piedra 2/16/05		
Schönauer, U.	William F. Brooks 2/16/05		

REVISION APPROVAL RECORD:

Rev Date	Project/	Revised By:	Approved By:	(Signature and date)
(yyyy-mm-dd)	PC	(Last, F I typed)	(Last, F I typed)	
2019-06-17	D324	Walden, Peter Piedra, Ed Czerwinski, C. Schoenauer, U. Furuta.S	Czerwinski, C.	Chris Czerwinski, 06/17/2019

Description of Change	 Added 932 SBSB Fault, 6LS-TYP 0-2, Fan Duty Idle %, Sequenced Brk0/1, SBSB Vel mm/s, SBSB Motor Trq %, SBSB Regen Trq%, engineering test 610, motor type 511. Added descriptions for Advanced Hovering Control. Added DDP sec, ARD DDP sec, ERO Type 0/1, TCI Pos Limit, ARD LRT AC Lv PU. Updated Section 6.4.2. "Event-Specific Data", added "544 Torq Obs FIt", "Torq Obs Err % ", "LvIAccThresholds", DAT signals: Torque I Obs, Trq I Obs Fil ,Trq I Err Fil, Trq I Obs Err, Trq Obs Err %. Menu 5-8 Overspeed Test. Added Nom Speed 1500 to Minimal LS distance table in Section 4.7. Adapted references to "UCM-EN on/off"=1 for UCM-EN brake monitoring. Updated description for "ARD Operation" Added Sec.9.1, 9.2 for SM160, SM260 motor parameter Updated Section 2.3.1 "Method for Updating EEPROM Parameters" Changed minimum values for "Vel Stop mm/sec" and "Vel Inr wc rad/s"
Reason for Change	For for AAA30924MAE.

This work and the information it contains are the property of Otis Elevator Company ("Otis"). It is delivered to others on the express condition that it will be used only for, or on behalf of, Otis; that neither it nor the information it contains will be reproduced or disclosed, in whole or in part, without the prior written consent of Otis; and that on demand it and any copies will be promptly returned to Otis.

Table of Contents

1	Introduction	5
1.1	Applicable Hardware Configurations	
1.2	Applicable Vialdware Configurations	
1.3	References	
1.4	Abbreviations, Acronyms and Terms	
1.5	Conventions Used in this Document	
2	Software Release Notes	
2 .1	Software Modifications	
2.1	Known Bugs	
2.2	Required EEPROM Changes For Drive Software Upgrade	
2.3.1	Method for Updating EEPROM Parameters	
2.3.1	Which parameters need to manually set	
3	Drive Operation	
-		
3.1	Drive Modes	
3.1.1 3.1.2	MCSS Mode	
3.1.2	Manual Mode CAN Mode	
	Engineering Test Modes	
3.1.4 3.2	Drive States	
4	Installation and Startup	
4.1	Requirements	
4.2	Wiring Guidelines for 422 Interface.	
4.3	Parameter Setup	
4.4	Encoder Adjustment	
4.5	Check of Direction	
4.6 4.7	LEDs Check of 1LS/2LS	
4.7 4.8	PRS	
4.8 4.8.1	Example PRS configuration: PRS2	
4.8.1	Learn run	
4.9	Procedure	
4.9.1	Faults during Learn Run	
4.9.3	Find Bottom Landing Run	
4.9.4	Viewing the Landing Table	
4.10	Floor Level Adjustment	
4.10.1	Adjustment of Position Regulator Overshoot	
4.10.2	Adjustment of spring effects w/o rope via "HitchPress comp%"	
4.10.3	Adjustment of spring effects for rope via "RopeStrtch comp%"	30
4.10.4	Adjustment of spring effects for car load via "Duty_kg % of car"	31
4.10.5	Adjustment of direction dependency via "Vane Hysteres mm" and of leveling bias via	•
	"VaneBias (10) mm"	32
4.11	Start Jerk / Rollback Reduction	
4.12	Reduced Terminal Speed (ETSD support)	
5	Self-Commissioning Operation	
5.1	Overview	
5.2	EEPROM parameters	
5.3	How do I do this	
5.4	Running Self-Commissioning Tests	
5.4.1	Entering Auto Tune Mode	
5.4.2	Entering Motor Nameplate Data and Number of Poles.	
5.4.3	Initial Tests with Stationary Elevator (Locked Rotor Tests) – INDUCTION MOTOR ONLY!	40
5.4.4	Checking Motor Phasing	

5.4.5	Motor Fine-Tuning Tests – INDUCTION MOTOR ONLY!!	40
	Motor File-Tulling Tesis – INDUCTION MOTOR ONLT!!	.40
5.4.6	Inertia Adjustment – Induction Motor or PM Synchronous Motor	
5.4.7	Parameter Display	
5.4.8	Exiting Auto Tune Mode	
5.5	Troubleshooting Notes	
6	Service Tool	
6.1	Service Tool Access Level	
6.2	Menu Tree	
6.3	Monitor Menu	
6.3.1	Parameter Visibility	
6.3.2	Display Format	
6.3.3	1-1 STATUS	
6.3.4	1-2 MOTOR	
6.3.5	1-3 MOTION	
6.3.6	1-4 INVERTER	
6.3.7	1-5 DISCRETES	
6.3.8	1-6 METRICS	
6.3.9	1-7 VANES	
6.3.10	1-8 ENGINEERING	
6.4	Event Log	
6.4.1	General Description	
6.4.2	Event-Specific Data	
6.4.3	Shut Down Error Handling	
6.4.4	Occurrence Counters	
6.4.5	Software Reset	.72
6.4.6	Event Response	.73
6.4.7	Event Overview	
6.4.8	Event Menu Detailed Descriptions	
6.4.9	Information Events	
6.4.10	Self Commissioning Events	.79
6.4.11	Inverter Current Faults	. 80
6.4.12	Converter Current Faults	.83
6.4.13	Voltage Faults	.85
6.4.14	Brake Faults	88
6.4.15	Motion Faults	.90
6.4.16	Temperature Faults	.98
6.4.17	State Faults	. 99
6.4.18	Task Overrun Faults	104
6.4.19	Communication Faults	104
6.5	Central Failure Management	107
6.5.1	Plug & See	107
6.6	Service Tool Parameters	111
6.7	Detailed Parameter Description	120
6.7.1	3-1 CONTRACT	120
6.7.2	3-2 ADJUSTMENT	127
6.7.3	3-3 BRAKE	141
6.7.4	3-4 MACHINE	146
6.7.5	3-5 PROFILE	151
6.7.6	3-6 FACTORY	155
6.8	Engineering Parameters Detailed Description	
6.8.1	6-1 ENG ADJUST	
6.8.2	6-2 ENG TEST	
6.8.3	6-3 DAC	167
6.8.4	6-4 I2C EEPROM	167
6.9	Test Menu Detailed Description	

6.9.1	5-1 FAN TEST	168
6.9.2	5-2 TURNOVR TST	
6.9.3	5-3 BrakeTRQ TST	
6.9.4	5-4 Brk Open TST	
6.9.5	How to check the balanced load? (For PM machine)	
6.9.6	5-5 Opt ARO TEST	
6.9.7	5-6 BUFFER/ETSD	
6.9.8	5-7 NTSD TEST	
6.9.9	5-8 OVERSPEED TEST	
6.9.10	Self-BTI	
7	Data Acquisition Tool	
7.1	Signals	
7.2	Self Commissioning DAT variables	
7.3	Signal Groups	
•		
8	Engineering lest Modes	190
8 8.1	Engineering Test Modes	
-	Overview	
8.1		190 191
8.1 8.2	Overview Enabling and Changing Test Modes	190 191 191
8.1 8.2 8.3	Overview Enabling and Changing Test Modes Exiting Test Modes	
8.1 8.2 8.3 8.4	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O	
8.1 8.2 8.3 8.4 8.5	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters	
8.1 8.2 8.3 8.4 8.5 9	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions	
8.1 8.2 8.3 8.4 8.5 9 9.1	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters Motor parameter for SkyMotion 160 Machine	
8.1 8.2 8.3 8.4 8.5 9 9.1 9.1.1	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters Motor parameter for SkyMotion 160 Machine Brake parameter for SkyMotion 160 Machine	
8.1 8.2 8.3 8.4 8.5 9 9.1 9.1.1 9.2	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters Motor parameter for SkyMotion 160 Machine Brake parameter for SkyMotion 160 Machine Motor parameter for SkyMotion 260 Machine	
8.1 8.2 8.3 8.4 8.5 9 9.1 9.1.1 9.2 9.2.1	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters Motor parameter for SkyMotion 160 Machine Brake parameter for SkyMotion 160 Machine Motor parameter for SkyMotion 260 Machine Brake parameter for SkyMotion 260 Machine Brake parameter for SkyMotion 260 Machine Inertia Calculations	
8.1 8.2 8.3 8.4 8.5 9 9.1 9.1.1 9.2 9.2.1 10	Overview Enabling and Changing Test Modes Exiting Test Modes Test Mode I/O Test Mode Descriptions Pre-Defined Motor Parameters Motor parameter for SkyMotion 160 Machine Brake parameter for SkyMotion 160 Machine Motor parameter for SkyMotion 260 Machine Brake parameter for SkyMotion 260 Machine	

1 Introduction

1.1 Applicable Hardware Configurations

This document contains information for the Otis Gen2-R2 Modular Regenerative Drive. The processor board (Global Drive Control Board – GDCB) version covered by this document is:

• Processor Board: Axx26800AKT

1.2 Applicable Software Versions

This document covers software AAA30924MAE. Applicability to other SCN's is uncertain.

1.3 References

- 1. "Interface Control Document for the Motion Command Sub System, Drive and Brake Control Sub System", Otis document number 51081.
- 2. "Interface Control Document for RS422 Interface between TOC and MR Drive". Otis document number 51081
- 3. "MCBIII Messages, Version 1.0", Otis Document 54441.
- 4. "Design Requirements Specification Gen2 Regenerative Drive Processor Board", Otis document number 55724.
- 5. "Software Requirements Specification for Gen2 Modular Regenerative Drive", Otis document number 55658.
- 6. *"Gen2 Modular Regenerative Drive Software Design Document",* Otis document number 55659.
- 7. "Modular Elevator Control System Service Tool", Flohr Otis document number 9693B. [SVT].
- Standard Work Process 1.1.12.0-1, "Construction Startup Procedure for E311 VF(GEM/MVS)".
- 9. "MCB III GeN2 Service Tool Manual", Field Component Manual, Otis Engineering Center, Berlin.

Document: 55661

Sheet: 6 of 213

1.4 Abbreviations, Acronyms and Terms The following abbreviations, acronyms and terms are used in this document:

ADC	Analog to Digital Converter
AHC	Advanced Hovering Control
CAN	Controller Area Network
CRC	Circular Redundancy Check
CEIB	Communication and Encoder Interface Board (Axx26800AQN)
DBD	Drive Block Disconnect
DIB	Down Inspection Button
DDP	Delayed Drive Protection
DSP	Digital Signal Processor
GDCB	Global Drive Control Board (Axx26800AKT)
el2C	enhanced I2C EEPROM storage capability
ESTOP	Emergency Stop
LS	Limit Switch
LWSS	Load Weight Subsystem
MCSS	Motion Command Subsystem; Applies to MCSS and LMCSS
MR	Machin Room
NTSD	Normal Terminal Stopping Device
PLL	Phase Lock Loop
PRS	Position Reference System
PTR	Prepare To Run signal from MCSS
RTR	Ready to Run signal declared by DBSS and sent to MCSS.
SCN	Software Configuration Number (i.e. AAA30924AAB)
SVT	Service Tool
тсв	Traction Control Board
тос	Top Of Car
UIB	Up Inspection Button

1.5 Conventions Used in this Document

- The default paragraph text is 10 pt. Arial font.
- 10pt. Courier New is used to indicate service tool text.
- All headings and parameters are cross-referenced throughout the document so that heading text is entered only once, where the detail descriptions are located.

2 Software Release Notes

2.1 Software Modifications

Refer to the applicable Software Configuration Release Document's.

Attention: AAA30924MAA requires GDCB version AEA26800AKT which has 4Mbit serial flash device.

2.2 Known Bugs

3 levels of software bug severity are identified:

MAJOR: Misoperation could cause callback or impact safety.

MINOR: Possible misoperation will not cause callback or impact safety.

TRIVIAL: No impact on performance or operation.

All known bugs are listed. Software release criteria dictates that a release shall not take place if a Major bug is known to exist.

- 1. TRIVIAL: There is a minor bug with the SVT display for the fault "516 Corr failed". The fault response in the SVT is shown as ESTOP, when it is actually DECEL. This will be corrected by SCR# 30924-1067.
- 2. TRIVIAL: There is a minor bug with the SVT display for the fault "702 Prechrg Time". The fault response in the SVT is shown asWARN, when it is actually ESTOP. This will be corrected by SCR# 30924-1068.
- TRIVIAL: The saced event log may not be correct after a software upgrade. It the event log is needed it is recommended to record the event log before software upgrade. It is also recommended to clear the event log after software upgrade. SCR 2039 was enetered for this issue.

2.3 Required EEPROM Changes For Drive Software Upgrade

2.3.1 Method for Updating EEPROM Parameters

Drives being upgraded to this Software Configuration Number may require some EEPROM parameter values to be changed or added.

NOTE: It is strongly recommended that a copy be made of the currently working EEPROM. After copying, set aside the original EEPROM and install the newly made copy.

Initially, the following fault may occur in menu 2 EVENT LOG:

705	E2	Invalid
000	:00:	:00:00.04

The reason for this is the data in the EEPROM is set to values incompatible with the current SCN or that new EEPROM parameters have not yet been set. The invalid or blank values must be corrected.

→ Pressing SHIFT_ENTER tells which parameter is invalid and what menu it is located.

A specific parameter can be easily set to its default value as described below: → press SHIFT-7 (D) to prepare a default value to be entered in the SVT edit field, → press ENTER to accept this value (same as the value would have been entered manually).

Note: this procedure works only if the specific parameter has a defined default value.

2.3.2 Which parameters need to manually set

Which parameters that need to be manually set depends on which software version that is being upgrading from.

To determine which parameters need to be manually set, please see the table below and find the column corresponding to the old software version that is being upgraded from. The parameters marked with an "X" in that column are the parameters that need to be set manually after upgrading to the new software version.

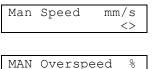
AAA30924MAE (A4330924MAE)							Para	mete			ay n upgra				nuall	y set
31 SETUP	Menu	Min	Max	Default	Actual	Access Level	AP130924MAD	AAA30924MAD	AP130924MAC	AAA30924MAC	AP330924MAB	AP230924MAB	AP130924MAB	AAA30924MAB	AP130924MAA	AAA30924MAA
*ARD Operation	31	0	2	0		2		x	x	x	x	x	x	x	x	x
*ARD DDP sec	31	270	600	270		2		x	x	x	х	х	х	х	х	х
*ERO type 0/1	31	0	1	0		2		x	x	х	х	x	х	х	х	х
*TCI Pos Limit	31	0	1	0		2		x	x	х	х	x	х	х	х	х
*AHC Enable 0/1	32	0	1	0		2	x	x	x	х	x	x	x	x	x	x
*TOC Car Dir 0/1	32	0	1	0		2	x	х	x	х	х	х	х	х	х	х
*AHC Kp gain	32	0	10	-		2	х	х	х	х	х	x	х	x	х	x
*AHC Kd gain	32	0	5	-		2	x	х	x	х	х	х	х	х	х	х
*AHC Kd RedFactor	32	0	4	-1		2	x	х	x	х	х	х	х	х	х	х
*AHC Notch frq Hz	32	0	2.3	-		2	x	х	x	х	х	х	х	х	х	х
*AHC Ln Enc Th mm	32	0	2000	-		2	x	x	x	х	х	х	х	х	х	х
*AHC Nm Enc Th mm	32	0	2000	-		2	x	х	x	х	х	х	х	х	х	х
*AHC Enc/Vn Th mm	32	0	200	-		2	x	x	x	х	х	х	х	х	х	х
*AroMRo Delay Sec	32	10	120	10		2				х	х	х	х	х	х	х
*Inv NTSD Ilimit%	32	0	88	88		2									х	х
*MaskOut Warning1	32	0	999	0		2				х	х	х	х	х	х	х
*MaskOut Warning2	32	0	999	0		2				х	х	х	х	х	х	х
* Fan Duty Idle %	32	3	100	100		2	х	х	х	х	х	х	х	х	х	х
*In Car noLoad kg	33	80	200	80		2									х	х
*Self BTI Block	33	0	2	0		2									х	х
*Check Unbalance	33	0	1	0		2									х	х
*Lockup by S-BTI	33	0	1	0		2									х	х
*Brk DelayTime ms	33	0	10000	1500		2									х	х
*Brk Pick V %	33	0	100	70		2			х	х	x	x	x	x	x	x
*Brk Hold V %	33	0	100	40		2			х	х	х	x	x	x	х	x
*Sequenced Brk0/1	33	0	1	0		2	x	x	х	х	х	x	x	x	х	x
*SBSB Vel mm/s	33	0	3000	2500		2	x	х	х	х	х	x	x	x	х	x
*SBSB Motor Trq %	33	29	125	125		2	x	x	x	х	х	x	x	х	х	x
*SBSB Regen Trq %	33	0	79	0		2	x	х	х	х	х	x	x	x	х	x
* LRT AC Level PU	34	0.01	0.5	0.06		2									х	х
*ARD LRT AC Lv PU	34	0.01	0.5	0.06		2		x	x	х	х	x	x	х	х	х
*GovOverSpd mm/s	35	0	16000	0		2	х	х	х	х	х	x	x	х	х	x
*TerminalPhase mm	35	0	25000	0		2				х	х	x	x	х	х	x
*TerminalPhs mm/s	35	10	8000	300		2				х	х	х	x	х	х	х
*Cnv PWM freq Hz	36	2000	10000	10000		2									x	x
*Inv PWM freq Hz	36	2000	10000	10000		2									x	x
*Cnv Hrmnc On 0/1	36	0	1	1		2									x	x
*Vel Inr wc rad/s	61	0	10	2		2	x	x	x	x	x	x	x	х	x	x
*Torg Obs Err %	61	0	100	0		2	x	x	x	X	x	X	X	x	x	x
*EngTest Param F1	62	0	99999	0		3	x	x	x	x	X	x	x	x	X	x
*EngTest Param F2	62	0	99999	0		3	x	x	x	x	X	x	x	x	x	x
*EngTest Param F3	62	0	99999	0		3	x	x	x	x	x	x	x	x	x	x
*EngTest Param F4	62	0	99999	0		3	x	x	x	x	x	x	x	x	x	x
*EngTest Param F5	62	0	99999	0		3	x	x	x	х	x	x	x	x	x	x
*SSM Config	62	0	0xFFFFFFF	-		3					x	x	x	x	x	x
*SSM PhantRPeriod	62	-	0xFFFFFFFF			-					x	x	x	x	x	X
*SSM MaxSlip	62 62	0	0xFFFFFFFF	-		3					x	x	x	x	x	X
*SSM MaxSlip2		0	0xFFFFFFFF 0xFFFFFFFF	-		3					x	x	x	x	X	X
*SSM MaxSlip3	62 62	0	0xFFFFFFFF 0xFFFFFFFFF	-		3					x	x	x	x	x	x
*VTE LdRatio Hyst *VTE Hitch Strtch	62	0	0xFFFFFFFF 0xFFFFFFFFF	-		3					x	x	x	x	x	x
		0	0xFFFFFFFF 0xFFFFFFFFF	-		3					x	x	x	x	x	x
*VTE MaxErrSameEg *VTE MaxErrOtherE	62 62	0	0xFFFFFFFF 0xFFFFFFFFF	-		3					x	x	x	x	x	x
I VID MAXELLUCINELE	02										х	х	х	х	х	x
*VTE MaxDevFrmNom	62	0	0xFFFFFFFF	-		3					x	x	x	х	x	х

Document: 55661

Sheet: 9 of 213

3 Drive Operation

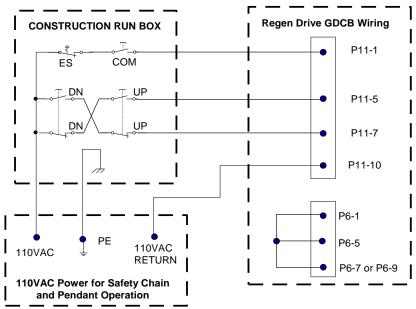
3.1 Drive Modes


The Gen2 Regenerative Drive is designed to be compatible with both MCSS-type and TCBC-type controllers. As a result, two of the fundamental operating modes of the drive are *MCSS mode* and *CAN mode*. The setting of the service tool parameter Interface Type specifies which controller is to be used and determines the fundamental operating mode. The mode determines the source of the motion commands and other functionality of the drive. Additionally, there are sub-modes, each of which is described below.

3.1.1 MCSS Mode

MCSS mode is the normal operating mode when the drive is to be used with an MCSS-type controller. The mode has to be selected using the service tool parameter Interface Type. In MCSS mode, the velocity reference is obtained from the MCSS-type controller according to the MCSS ICD [1]. The drive has to be connected to the MCSS-type controller via the RS-422 serial interface.

3.1.2 Manual Mode


Manual mode is a sub-mode, available only when *MCSS mode* is selected. Manual mode is intended for use only during installation. The Manual Mode velocity profile is determined by the setting of EEPROM parameters in menu 3-5 PROFILE. There are no acceleration or deceleration limits other than these EEPROM settings. An overspeed trip is also provided and is based on the following parameters in menu 3-5 PROFILE

and menu 3-2 ADJUSTMENT:

The safety chain must be provided to the drive and the manual mode pendant should be wired as shown in the following diagram or Manual mode operation is not possible.

 $\langle \rangle$

Two restrictions are placed on the operation of the up and down command inputs:

- 1. Both up and down inputs cannot be asserted at the same time. If stopped, the drive will not run; if moving the drive will decelerate and stop even if the opposite direction input is de-asserted while the drive is decelerating.
- 2. While running, if the asserted input is released the drive will decelerate and stop even if the input is reasserted while the drive is decelerating.

3.1.3 CAN Mode

CAN mode is the operating mode when the drive is to be used with a TCBC-type controller. The mode has to be selected using the service tool parameter Interface Type. In CAN mode, start and stop commands are obtained from the controller according to the CAN ICD [2]. The drive has to be connected to the TCBC-type controller via the CAN serial interface. There are several submodes when the drive is set to CAN mode which include: *Normal, TCI / ERO, Correction, Rescue*, and *Learn.*

3.1.4 Engineering Test Modes

Special test modes can be activated by using the engineering version of the Data Acquisition Tool (DAT), Software Configuration Number AAA30959XXX. For a complete list of the test mode operating instructions, see Section 8.

3.2 Drive States

The drive has several states that characterize the status of the drive and the distinct portions of the motion profile. The table below describes the drive states. The drive state can be monitored using the service tool menu **1-1 STATUS**.

Internal Drive State	Description	Actions
Init	Initialization state.	 Indentify drive type by reading EEPROM in power section, if available. If not, use GDCB EEPROM parameter Drive Type.
Power Down	In this state, the power section is disconnected from the AC mains. This state is entered when the drive is first powered-on. If the AC line is valid, then the state advances to the Pre- charge state. In CAN mode, this state can also be entered when commanded to via the DrivePowerDown message to save energy (sleep mode). The drive exits PowerDown when commanded by the DrivePowerDown message	 Disable PWMs De-energize Safety (SX) relays Open main (MX) contactor. Open pre-charge (PX) contact. Close discharge (DX) contact.
Pre- charge	This is the state of the drive while the DC bus is charging. When precharge is complete, the state advances to either Wait for Safety or Idle , depending on the safety chain. If the bus does not charge in a certain amount of time, the Power Down state is re-entered.	 Close pre-charge (PX) contact. Open discharge (DX) contact. Close main (MX) contactor when pre-charge complete.
ShutDown	This state is entered after certain faults have occurred (see DECEL , ESTOP , COMP faults). The drive stays in this state until motion has stopped and 2 seconds have elapsed. The drive will NOT attempt another run until the fault condition clears. When the fault clears, the state advances to Wait for Safety or Idle .depending on the safety chain. Also, if the drive was previously commanded to Power Down, the drive will advance to PowerDown .	 Send stop and shutdown request (SAS) to MCSS if certain critical faults have occurred. Disable PWMs De-energize Safety (SX) relays Main contactor (MX) may be dropped for I critical faults.
Wait for Safety	This state is entered when the safety chain is open. If the safety chain closes, the state will advance to Idle .	 Disable PWMs De-energize Safety (SX) relays
ldle	This state is entered when there is no demand, the safety chain is made, and certain faults have not occurred. If there is demand, the state advances to Prepare To Run .	Disable PWMsDe-energize Safety (SX) relays
Prepare To Run	This state is entered when prepare to run (PTR) command is activated. When complete, the drive advances to Ready To Run .	 Energize Safety (SX) relays Enable PWM Establish flux in machine (ramp magnetizing current in induction motor or run locked-rotor test if necessary for PM motor)

Document: 55661

Ready To Run	In this state, the drive waits for the lift brake command. When the lift brake command is received, the state advances to Lift Brake. In CAN Mode w ABL: Waits for Lift Brake Command In CAN mode w/o ABL: Automatically advaces to Lift Brake	 Set ready to run (RTR) true.
Lift Brake	This state is entered when the lift brake (LB) command is activated. After the brake is lifted, the drive transitions to the Running state. <i>In CAN Mode w ABL</i> : Waits for DriveGoToLanding Command <i>In CAN mode w/o ABL</i> : Automatically advaces to Running	 Torque current ON Velocity regulator ON CAN & Manual Mode only: Position regulator ON Set pretorque level Lift brake Set brake lifted (BL) flag true
Running	This state is entered immediately after leaving the Lift Brake state.	 Allow non-zero velocity reference CAN & Manual Mode only: Profile generator ON
Decel	CAN & Manual Mode only: This state is entered immediately after leaving the Running state when the drive's profile generator begins deceleration	 Allow non-zero velocity reference Drive's profile generator is in the decelerating state
Drop Brake	 This state is entered when: <i>MCSS mode</i> : LB command is de-asserted. <i>CAN & Manual Mode</i>: position and velocity meet the stopping criteria at the end of the run. Remains in this state until the brakes have dropped and post-torque ramp down has completed. It then advances to Idle. 	 Drop brake CAN & Manual Mode only: Position regulator & profile generator OFF Ramp torque down to zero Notifies the brake has dropped MCSS mode: Remains here until PTR is de-asserted. CAN Mode w ABL: Waits for EndRun command. CAN Mode w/o ABL: Advances directly to Idle
Brake Torque Test	 This state is applicable to all system when the Brake Maintenance tool is used. This state is entered when MCSS mode: Brake Test of Drive command is set with SVT and Brake Test of MCSS command is received. Manual mode: Brake Test of Drive command is set with SVT. CAN Mode: Brake Test of Drive command is set with SVT and Brake Test of OCSS command is received. When Brake Test mode is ended, the Drive state advances to Idle. 	 Set ready to run (RTR) true. Torque current ON LB OFF
Brake Open Test	This state is applicable only for JIS application and HSOVF Drive when the Brake Open tool is used. When Brake Test mode is ended, the Drive state advances to Idle.	• LB ON

4 Installation and Startup

4.1 Requirements

Starting up the Gen2 Regenerative Drive should be performed by authorized personnel only. The mechanical assembly of the hoistway and the cab as well as the electrical installation in the hoistway, controller, and E&I panel have to be finished to ensure successful inspection run. The encoder has to be mounted at the machine and properly connected to the drive. The electrical connections have to be completely installed and checked.

4.2 Wiring Guidelines for 422 Interface

The regenerative drive can be located at a significant distance from the controller without extreme wiring measures by using the following basic guidelines:

1) Treat the drive chassis, machine, and encoder cable as noise sources.

2) Treat the controller cabinet as a quiet ground reference.

3) The encoder cable shield should be connected to the drive chassis (via GDCB connector P9-8).

4) Do NOT connect the encoder cable shield to the controller cabinet.

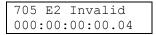
5) RS422 communication wires between the controller and the drive should be shielded twisted pairs.

6) Connect the RS422 communication cable shield to the controller cabinet (quiet ground reference).

7) The Drive to MCSS differential encoder signals should be shielded twisted pair wires.8) Connect the Drive to MCSS differential encoder cable shield to the controller cabinet (quiet ground reference).

In addition to the preceding guidelines, the routing of the earth ground connection must be considered. The earth ground connection should first go to the drive, then to the controller. This allows any common mode noise current to be shunted to earth without having the opportunity to induce a common mode voltage between the drive and the controller.

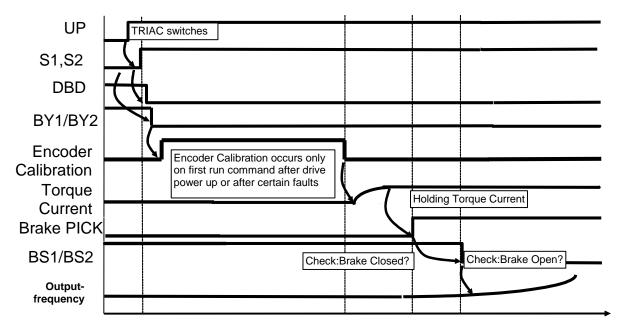
4.3 Parameter Setup


Most parameters have already been set to default values. However, in order to enable the drive to run, the following parameters must be set according to the contract:

- All parameters in service tool menu 3-1 CONTRACT
- All parameters in service tool menu **3-5** PROFILE

Refer to Section 6.7 for the detailed descriptions for the parameters in the above menus.

Since the Gen2 Regenerative Drive is compatible with MCSS-type and TCBC-type controllers, some parameters are not applicable and do not have to be set, depending on which controller is used. The parameter Interface Type specifies the type of controller being used. If certain parameters do not have to be set, they will not be visible in the service tool.


All applicable parameters noted above must be set before the drive is allowed to run. If not, the following error message will be visible in the event log:

If this occurs, press SHIFT-ENTER to determine which parameter has not been set.

4.4 Encoder Adjustment

The Gen2 Regenerative Drive performs an automatic encoder calibration at the beginning of the first run after power-up. During the calibration, the *brake remains dropped* and a test current is commanded in the motor to determine the magnet position of the rotor relative to the encoder. The test lasts for about 4 seconds, and is illustrated relative to other events in the timing diagram in the following Figure.

Figure 1 Timing Diagram Showing Encoder Calibration (PM motors only)

During the test, a tone may be heard from the motor. This is normal and to be expected. No user intervention is required during the automatic calibration. Note that the adjustment is automatically repeated after certain faults are detected.

When running the car on inspection after power-on, the inspection button must be held in for a minimum of 5 seconds in order for the Encoder Adjustment to complete. Inspection runs are not possible until the Enoder Adjustment is complete. The brake remains dropped during the encoder calibration procedure. Note: this is applicable for PM motor applications only.

4.5 Check of Direction

After setting the contract parameters, the direction and motor phasing needs to be checked by performing an inspection or manual run, depending on the controller being used:

- If Interface Type is set to MCSS-type, perform a manual run using the manual pendant.
- If Interface Type is set to TCBC-type, perform an inspection using ERO box.

If the car:

1. starts correctly in both directions and is following the inspection or manual mode profile:

- -> continue with the next step in the startup routine.
- 2. starts in the incorrect direction but is following the profile:
 - -> change the following parameter in service tool menu 3-2 ADJUSTMENT:

then continue with the next step in the startup routine.

3. does not follow the profile and/or results in an ESTOP with any of the following faults:

501 Pos Tracking	502 Vel Tracking	100 Inv SW Oct
000:00:00:00.04	000:00:00:00.04	000:00:00:00.04

-> it is likely that the motor phasing (relative to the encoder) is incorrect. The phasing can be changed manually by swapping two motor phases OR by changing the service tool parameter in menu **3-2 ADJUSTMENT:**

Motor Phase 0/1 <>

After changing this parameter, repeat the test.

4.6 LEDs

There are 3 LEDs on the Drive Control Board near the service tool connector. If these LEDs are visible, depending on where the drive is located, the status of the LEDs can be checked. The LEDs have the following meanings:

Status	Green (LED1)	Yellow (LED2)	Red (LED3)
DSD is in Depart	NOT	NOT	NOT
DSP is in Reset	FLASHING	FLASHING	FLASHING
DSP is Running	FLASHING	ANY STATE	ANY STATE
Car Moving Up	FLASHING	FLASHING	OFF
Car Moving Down	FLASHING	ON	OFF
Events in Log	FLASHING	OFF	FLASHING

The yellow LED should correspond correctly with the car direction.

4.7 Check of 1LS/2LS

The required minimum length of 1LS / 2LS is determined by the adjusted Nom Speed mm/s and Decel mm/s2. The actually effective deceleration rate at correction runs or NTSD is increased by typ. 15%-20% versus regular profile deceleration.

Nom Speed [mm/s]		Minimal 1LS / 2LS distance [mm]								
	@ Decel = 500 mm/s ²	@ Decel = 600 mm/s ²	@ Decel = 800 mm/s²	@ Decel = 1000 mm/s ²	@ Decel = 1200 mm/s ²					
500	320	280	240	210	190					
630	470	410	340	300	270					
800	700	610	500	430	380					
1000	1050	910	730	620	550					
1200	1460	1260	1000	840	740					
1500	2210	1890	1480	1240	1080					
1600	2500	2130	1670	1390	1210					
1750	2960	2520	1970	1640	1410					
2000	3820	3240	2520	2080	1790					
2500	5860	4950	3820	3140	2690					
3000	8330	7030	5400	4420	3770					
3500	11240	9460	7240	5910	5020					
4000	14580	12260	9360	7620	6460					
4500	18360	15430	11760	9550	8090					
5000	22580	18950	14420	11700	9890					
5500	27230	22840	17350	14060	11870					
6000	32310	27090	20560	16650	14040					
6500	37830	31700	24040	19450	16380					
7000	43780	36680	27790	22460	18910					

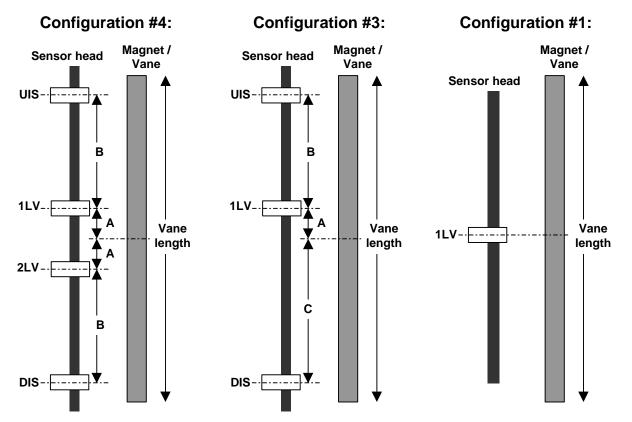
Note: The above values include a margin of 0.1% of the exact (=SVT) minimum and are rounded up to the next multiple of 10

If the drive is being used with TCBC-type controller (see parameter Interface Type), the drive limits TCI/ERO speed traveling towards the end of the hoistway within a LS to 0.15m/s:

- For the complete length of the LS if position is invalid.
- For the last 2m before the terminal landing if position is valid.

ERO/TCI runs away from the terminal are not limited, i.e. executed at Insp Speed mm/s.

To determine the minimum length for LS during installation, the following is recommended:


- 1. Set the profile to the contract speed and nominal deceleration, SVT parameters Nom Speed mm/s and Decel mm/s2 in M235.
- 2. Check the SVT parameter M217, LS length min mm to determine the minimum length for LS.
- 3. Set 1LS and 2LS to the required minimum length, plus an additional 20% (not to exceed 80%) for margin (this will avoid having to enter into the hoistway again after the installation if it is decided to decrease decel or jerk).
- 4. Perform the learn run.
- 5. Verify the learned lengths are correct via SVT parameters LS1 length mm and LS2 length mm in M217. Note: if they are incorrect, the drive should log the error 528 Profile Err in the event log indicating LS is not long enough for the selected deceleration rate. The fault is a log-only fault.

- 6. If a higher than nominal deceleration is desired, then increase the deceleration rate. A new learn run is not required.
- If a lower than nominal deceleration is desired, then decrease the deceleration rate. Note however, the drive may log the error <u>528 Profile Err</u> in the event log indicating LS is not long enough for the selected deceleration rate.

4.8 PRS

If the drive is being used with a GECB/TCBC-type controller (see parameter Interface Type), then a PRS has to be mounted, corresponding to a configuration from the table below. The magnets/vanes have to be located at the same level in each landing (relative to the hoistway door sill).

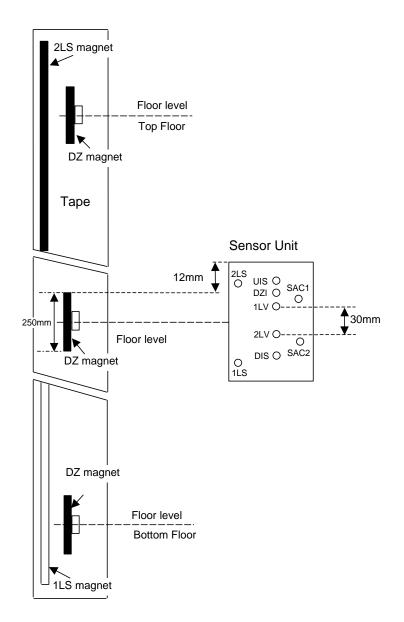
At shorter landings, the distance between door zones (= DZ magnet/vane edge-to-edge) must be at least 180 mm where the car is supposed to reach normal speed (>1.6m/s)., otherwise the door zones can not be separated with normal speed. In low-speed zones (e.g. end of hoistway), minimum gaps between DZ magnets must be guaranteed according to the table below.

The sensor heads are shown in the position where the car is level with the hoistway sill

Sheet: 19 of 213

Vane Sensor Type ¹)	PRS Name	Con fig #	Vane length [mm]	Minimum vane gap²) [mm]	A, B, C³) [mm]	Toleran ce ⁸) [mm]	Output logic ⁴)
0	PRS2 with ADO/RLEV	4	250	130	A=15 B=100	15	N.O.
1	PRS2 w/o ADO/RLEV	3	250	160	A=15 B=100 C=115	15	N.O.
2	PRS2, 1Sens, 250mm	1	250	50	-	15	N.O.
3	RPD-P2, 1Sens, 250mm	1	250	50	-	15	N.C.
4	CEDES Photo, 1Sens, 150mm	1	150	50	-	15	N.O.
5	CEDES Photo, 4Sens, 250mm	4	250	130	A=15 B=100	15	N.O.
6	RPD-P3	4	250	130	A=15 B=100	15	N.O.
7	PRS5	1	170	50	-	30	N.O.
8	PRSxx, 1Sens, 130mm	1	130	50	-	30	N.O.
9	PRS2 1LV+2LV, no RLEV	2 ⁶)	250	60	A=15	15	N.O.
10	RPD-P7A, 4Sens, 150mm	4	150	80	A=15 B=50	15	N.O.
11	RPD-P8A, 4Sens, 180mm	4	180	95	A=15 B=65	15	N.O.
12	PRS8N, 4Sens, 170mm	4	170 [180] ⁷)	92	A=15 B=62	15	N.O.
15	PRS8N, 1Sens, 170mm	1	170 [180] ⁷)	50	-	30	N.O.
99	Custom PRS ⁵⁾	cust om ⁵⁾	custom	Max sensor interval + 30	-	80	custom

Notes:


- 1) See SVT Contract Parameter "Vane Sensor Type".
- Measured between upper edge of one vane to lower edge of next vane, value includes ~20mm margin to minimum threshold checked at Learn Run.
- 3) A, B, C: See corresponding Configuration # in diagram above..
- N.O. = "Normally Open": If sensor on vane => PRS output closed = ca.+24V.
 N.C. = "Normally Closed": If sensor on vane => PRS output open = high impedance or ca. 0V.
- 5) For "Vane Sensor Type"=99, a PRS configuration can be customized with individual parameters, see 6.7.2. When entering "Vane Sensor Type"=99, the custom configuration is initialized to copy the previously selected standard PRS configuration (0...8).
- 6) Configuration with 2 sensors: 1LV is A mm above center, 2LV is A mm below center.
- 7) Expectation of perceived vane (=field) length differs from geometric vane length given.
- 8) Learn run fails if adjacent sensor transitions deviate from nominal by more than tolerance mm.

The **minimum distance between landings is** = Minimum vane gap [mm] + Vane length [mm]. Examples:

for Vane Sensor type = 0: Min. distance = 130mm + 250mm = 380mm. for Vane Sensor type = 7: Min. distance = 50mm + 170mm = 220mm.

The **maximum distance between landings is 12m**! If the required distance between landings is larger, dummy vanes need to be inserted.

4.8.1 Example PRS configuration: PRS2

4.9 Learn run

If the drive is being used with TCBC-type controller (see parameter Interface Type), then the learn run has to be performed before the first normal run. The learn run must be repeated if a door zone magnet was moved. Before starting the learn run, the parameters Number of DZ, Bottom DZ, and DZ in 1LS have to be set correctly, as well as Car Dir 0/1 and Motor Phase 0/1 (see Section 4.5).

NOTE: In CAN systems with GECB software >= GAA30780DAD, the learn run may already be included in the automatic system installation routines (no extra Learn Run from SVT necessary).

The learn run can be started from anywhere in the hoistway. If the car is positioned in a door zone within 1LS, the drive assumes this is the bottom landing and starts the learn run from there. Otherwise, it performs a "find bottom landing" run before the learn run.

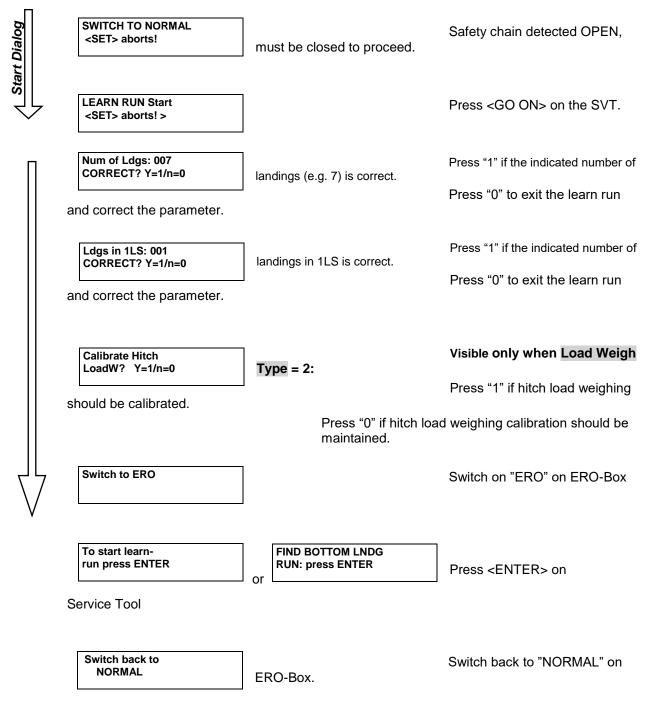
In the "find bottom landing" run, the car is automatically moved up out of 1LS (0.2m/s) if it was positioned in 1LS. When outside of 1LS, it is moved down with 0.5m/s until it enters 1LS. Then it is moved down with 0.2m/s counting landing vanes (starting from parameter "DZ in 1LS") until it enters the vane of landing 0. There it stops, ready for a learn run.

For the learn run, the car runs up from the lowest LV to the highest LV zone with 0.2 m/s within the 1LS and 2LS and with 0.4m/s between the LS. The drive stores the center position of each LV zones and the length of all LV zones. The center of the lowest LV zone is set to the position of 10.000m.

The learn run menu can be left during an ongoing learn run via the <MODULE>, <FUNCTION> or <SET> keys on the SVT in order to visit other SVT menus in the drive or in other components of the elevator, the learn run continues. At the end of the learn run, the learn run menu must be entered again to acknowledge the result. Also, after the completion of the "find bottom landing" run preceding a learn run, the start of the learn run must be acknowledged in the learn run menu (opportunity to verify visually that the car is in fact in the bottom landing).

Notes regarding parameter "DZ in 1LS":

- A landing is counted as "in 1LS" if any one of the PRS sensors (even UIS alone) is on the landing vane while the LS sensor is on the 1LS vane.
- When the parameter is set to a value **smaller** than the correct value, the "find bottom landing" run will end in a landing above the bottom. A subsequent learn run would then run the car into the final limit switch 8LS.
- When the parameter is set to a value **greater** than the correct value, the "find bottom landing" run will run the car into the final limit switch 7LS.
- => WHEN IN DOUBT, the smaller value could be chosen and then be increased in case the "find bottom landing" run ends above the bottom landing.


<u>Note</u>: The Learn Run uses the compensation mechanism for mm-position error effects as configured by parameters "Custom HwCmp 0/1" (SVT menu 3-2 ADJUSTMENT).

4.9.1 Procedure

1. To avoid trouble with passengers, switch off the door operator (e.g. by DDO) and disable hall calls (e.g. by CHCS).

2. Optionally: Move the car to the bottom landing via ERO (into LV zone).

3. The learn run is started in SVT menu "Learn 4-1":

anding Run	IF the car is inside 1LS but ou FIND BOTTOM LDG, moving up:	<i>tside of a door zone:</i> changes to "DZ" whenever the car is in a door zone.	The car moves up, the "–"		
Find Bottom Landing Run	IF the car is outside 1LS: FIND BOTTOM LDG, moving down:	changes to the landing number after the first va	The car moves down, the "–" ne is encountered in 1LS.		
\lor	BOTTM LDG: start learn? Y=1/n=0	landing according to the parameter "Landings in	The car has reached the bottom 1LS".		
	IF the car is inside 1LS and in	side of a door zone:			
Learn Run	Learn active CAR MOVES UP		The car starts moving up.		
Lea	L001 21065.9mm Vane 249.8mm	shows the last learned data:	While moving up, the SVT display		
\checkmark	position.	Vane length at this	Landing number (bottom = 0) and		
		vane length at this	ianung.		
	TABLE STORED IN E2PROM >	landing table has been stored.	Learn run was successful, new		
	go to NORMAL operation.		Press <goon> on the SVT to</goon>		
	HITCH LOADW CALI DONE >	when Load Weigh Type = 2	Visible only and HitchLw		
	calibration was confirmed b	efore:			
		Otherwise: "FAILED " is displaye	ssful, new values have been stored. ed and the old values are maintained. T to go to NORMAL operation.		
	LEARN RUN 4-1 <>				

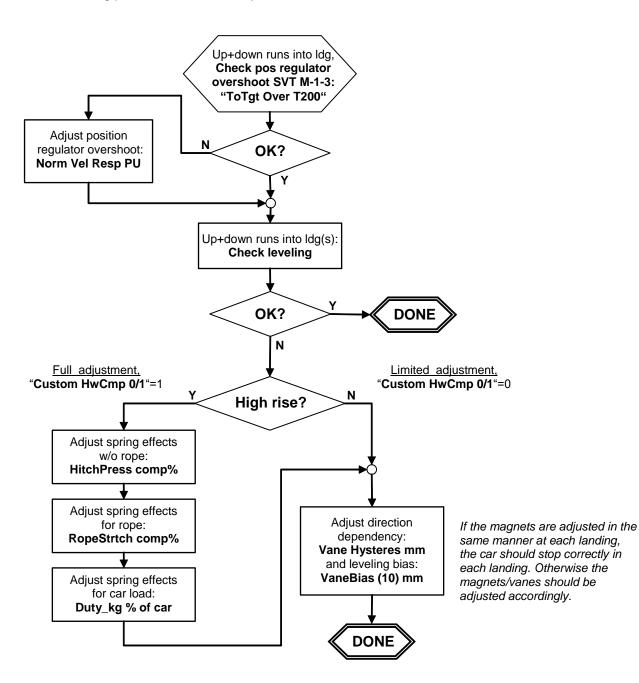
4.9.2 Faults during Learn Run When a fault is detected during the learn run, a corresponding message is displayed. After pressing <GOON>, the learn run is then aborted.

Fault display	Description
Drive NOT in CAN	The setup parameter Interface Type is not correct, should be a CAN
<pre>mode => abort ></pre>	controller.
DRIVE NOT READY	The drive is not yet ready to run. If this display appears for more than 1s
<set> aborts! ></set>	the drive may be blocked by a fault.
No LS signals	The CAN connection to the drive has been interrupted, no LS signal
=> abort >	information has been received for >2s.
RUN IN PROGRESS	Learn Run start is attempted while car is running.
=> abort >	
SIG NOISE/BOUNCE => abort >	Noise or excessive bouncing in hoistway signals (1/2LV, UIS, DIS).
PRS_SIG != 1VANE	PRS sensors are on two vanes or on no vane when the actual learn run
=> abort >	motion is about to start.
TRANSITN OVERDUE	Sensor transition on/off the vane does not occur when expected.
=> abort >	
DETECTED ## LDGs in 1LS: abort >	When car leaves 1LS, the number ## of encountered landings does not
III ILS. ADOIC >	match the setup parameter or the number of encountered landings exceeds the setup parameter in 1LS.
### LDGs before	According to the setup parameter, the top landing (###-) was reached
2LS: abort >	before 2LS.
INVAL PRS SIGNAL	Pattern of active and inactive PRS sensors is not possible on 1 or 2 vane
COMBI => abort >	with the selected Vane Sensor Type.
1LS: ON->OFF->ON	After leaving 1LS, the 1LS signal became active again => Gap in 1LS
gap => abort >	magnet/vane or bouncing in 1LS signal.
2LS OFF->ON->OFF	After entering 2LS, the 2LS signal became inactive again => Gap in 2LS
gap => abort >	magnet/vane or bouncing in 2LS signal.
1LS/2LS OVERLAP!	1LS and 2LS inputs are active at the same time.
=> abort >	
VANE GAP SHORT: xxxxmm! Abort >	The gap between two vanes of xxxx mm is too short for the selected
	Vane Sensor Type.
LR ABORTED!	The Learn Run was aborted by a non learn run error. Look in the event
See fault log >	log for detailed information.
LR ABORTED	The Learn Run was aborted by switching to ERO or TCI.
by ERO/TCI! >	

4.9.3 Find Bottom Landing Run

The Find Bottom Landing run can be started via SVT menu 4-3 from any position in the hoistway. It positions the car in the bottom landing, e.g. for starting a subsequent door check sequence run (required by controller in CAN mode at installation time). In order to allow this run to establish valid position, a successful learn run must have been executed before.

The user interaction during the Find Bottom Landing run and the preceding Start Dialog is described above (see 0)

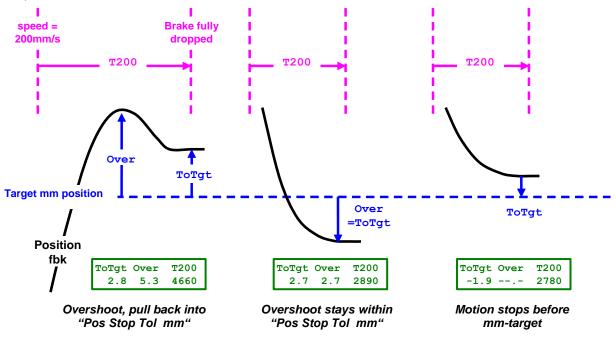

4.9.4 Viewing the Landing Table

The landing table can be viewed in SVT menu 4-2. It shows each landing position and the learned vane length at each landing. The first landing is arbitrarily set to 10,000 mm. The display will look as shown below:

4.10 Floor Level Adjustment

If the drive is being used with TCBC/GECB-type controller (see parameter Interface Type), then the landing performance can be adjusted in the drive.

4.10.1 Adjustment of Position Regulator Overshoot


In order to arrive exactly at the target mm-position after a run of sometimes many thousand mms, the drive's regulators need to be set up correctly. Deviations of e.g. the unit's real inertia, friction or motor parameters from their assumed values can lead to undesired end-of-run behavior.

Examples:

- The run goes too far (position overshoot), turns around and slowly creeps back into the final stop
- Or the run overshoots as above but is not able to creep back into the **Pos Stop Tol mm** target region -> **506 Stopping Err**
- Or the run stops too soon, then needs to creep forward again.

Such effects can be felt riding the car, or noticed in the event log. Detailed and quantitative assessment is possible via the SVT M-1-3 menu "ToTgt Over T200". This menu displays the extent of the overshoot (=Over), the deviation of the final position (brake dropped) from the target (=ToTgt) and the time that the motion takes from speed=200mm/s to "brake dropped".

Examples for SVT M-1-3 menu "ToTgt Over T200":

Over = max overshoot (always positive) [mm] ToTgt = dist to tgt (positive if tgt is overshot) [mm] T200 = time [ms] needed for end of run, starting at speed =200mm/s Pre-conditions for adjustment of the regulator:

- The **Inertia kg-m2** has been set to the correct value. Later changes of this parameter would potentially require new regulator adjustment. The same applies to motor parameters.
- Load Weighing is enabled and adjusted.
- A Learn Run has been performed, unit is in NORMAL operation.
- The profile has been set to its final setup: Nom Speed, Accel, Decel, Jerk, Creep Speed, Creep Length, Creep jerk..
- Empty car.
- The following parameters values are set to support the Norm Vel Resp PU adjustment:
 - M-3-2: VaneBias (10) mm = 10
 - M-3-2: Vane Hysteres mm = ->contract setup
 - M-3-2: Custom HwCmp 0/1 = 0
 - M-3-5: Zero Vel Tim ms = 0

Adjust Norm Vel Resp PU parameter to minimize regulator overshoot

- #1) Set Norm Vel Resp PU to the contract setup value (typically 1.0 or 0.7).
- #2) Perform 1 run each between the following landings:

```
top -> top-1
top-2 -> top-1
bottom+2 -> bottom+1
bottom -> bottom+1
After each run, record the ToTgt/Over and the T200 values
(->SVT M-1-3 "ToTgt Over T200").
Note: For ToTgt/Over use the value Over if it is displayed, use ToTgt if Over is not displayed
(-> i.e. in case ToTgt is negative)
```

- #3) Evaluate if the results of step#2 are acceptable (see note on criteria below). If improvement is desired, proceed with next iteration = step#4.
- #4) Decrease/increase Norm Vel Resp PU by ~0.1 (typically within range 0.5...1.2) and repeat steps #2+#3. Typically, a decrease will reduce positive overshoot (car stops sooner) while an increase will cause the car to run further.

<u>Note</u>: Criteria for "acceptable" performance depend somewhat on the unit's characteristics like profile and the brake settings, as well as on the customer expectations. As an <u>approximate</u> reference, typical values could be:

	ToTgt/Over	T200	Comment
"GOOD"	-0.5 +1.0, variation of step#2 values < 1.2	1500 3000	T200 depends on brake settings
"OK"	-1.0 +3.0, variation of step#2 values < 2.0	2500 4000	
"NOT GOOD"	Over > " Pos Stop Tol mm " or/and Over > ToTgt	>4000	T200 increased because of pull back extending run

High performance units (e.g. high rise) should achieve GOOD values.

	Norm Vel Resp PL	J = 1.0	Norm Vel Resp PL	J = 0.9	Norm Vel Resp PU = 0.8					
	Over/ToTgt	T200	Over/ToTgt	T200	Over/ToTgt	T200				
top->top-1	1,8	2620	0,1	2720	-0,8	2850				
top-1->bot	2,5	2620	0,8	2700	-0,3	2950				
bot->bot+1	1,8	2570	0,2	2600	-1,0	2880				
bot+1->top	1,6 2640		-0,2	2760	-0,9	2970				

Example iteration:

Selected Norm Vel Resp PU = 0.9

4.10.2 Adjustment of spring effects w/o rope via "HitchPress comp%"

This adjustment procedure measures offsets (car sill - ldg sill) in landing **top-1** and brings the sill offsets to the same value for runs in UP and DOWN direction.

Note: It is <u>not</u> the goal of this adjustment to bring the sill offsets to zero, just to match them in both directions!

This procedure requires a suitable gage (=measurement tool) to measure car sill versus landing sill offsets with an accuracy of at least ~0.5mm.

Pre-conditions for adjustment of "HitchPress comp%":

- Inertia and profile parameters (M-3-5) are set to final values, Load Weighing is enabled, Learn Run was performed, as in 4.10.1.
- Norm Vel Resp PU is adjusted (see 4.10.1).
- The **Vane Hysteres mm** value is set to represent the PRS (=RPD) sensor's hysteresis, only, as pre-set in the contract setup or determined by separate measurements.
- M-3-2: VaneBias (10) mm = ->not changed within this adjustment procedure.
 - M-3-2: Custom HwCmp 0/1 = 1
 - M-3-2: RopeStrtch comp% = 100
 - M-3-2: HitchPress comp% = 100
 - M-3-2: Duty_kg % of car = 50
 - M-3-5: **Zero Vel Tim ms** = ->contract setup
- Empty car.

Adjustment procedure for "HitchPress comp%":

- #1) Measure the sill offsets for two DOWN runs top -> top-1.If the results vary by >0.3mm, make more runs to establish a reliable average.
- #2) Measure the sill offsets for two UP runs top-2 -> top-1.If the results vary by >0.3mm, make more runs to establish a reliable average.
- #3) Measure the sill offsets for two long UP runs top-4 (or -5 etc.) -> top-1. If the results vary by >0.3mm, make more runs to establish a reliable average.
- #4) Calculate the average from step (#2) and (#3).
- #5) IF the average offset upwards (#4) is higher (>) than downwards (#1), <u>decrement</u> the "HitchPress comp%" parameter.
 IF the average offset upwards (#4) is lower (<) than downwards (#1), <u>increment</u> the "HitchPress comp%" parameter.
 Rough guideline: Adjust by ~5% per 0.1mm difference.
- #6) Repeat steps (#1)-(#5) until the deviation between both directions is < 0.5mm.

Example (selects value 240%):

HitchPress comp% =	Hitcl	Press	comp ⁹	/ =
--------------------	-------	--------------	-------------------	-----

100%		100%		1 70%		170%		240%		240%	
DOWN		UP		DOWN		OWN UP		DOWN		UP	
ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset
15->14	+0,6	13->14	-0,5	15->14	+0,3	13->14	-0,2	15->14	0,0	13->14	-0,1
15->14	+0,7	13->14	-0,6	15->14	+0,5	13->14	-0,2	15->14	-0,1	13->14	0,0
		7->14	-0,8			7->14	-0,3			7->14	-0,1
		7->14	-0,8			7->14	-0,4			7->14	+0,3
Avg=	+0,7		-0,7		+0,4		-0,3		-0,1		+0,0

Note: Negative offset means car sill is below landing sill!

4.10.3 Adjustment of spring effects for rope via "RopeStrtch comp%"

Analog to 4.10.2 Adjustment of spring effects w/o rope via "HitchPress comp%", this adjustment procedure measures offsets (car sill - ldg sill) in landing **bottom+1** and brings the sill offsets to the same value for runs in UP and DOWN direction.

Pre-conditions for adjustment of "RopeStrtch comp%":

As at the end of 4.10.2 Adjustment of spring effects w/o rope via "HitchPress comp%".

Adjustment procedure for "RopeStrtch comp%":

- #1) Measure the sill offsets for two UP runs bottom -> bottom+1.If the results vary by >0.4mm, make more runs to establish a reliable average.
- #2) Measure the sill offsets for two DOWN runs bottom+2 -> bottom+1.If the results vary by >0.4mm, make more runs to establish a reliable average.
- #3) Measure the sill offsets for two long DOWN runs bottom+4 (or +5 etc.) -> bottom+1. If the results vary by >0.4mm, make more runs to establish a reliable average.
- #4) Calculate the average from step (#2) and (#3).
- #5) IF the average offset downwards (#4) is higher (>) than upwards (#1), <u>increment</u> the "RopeStrtch comp%" parameter.
 IF the average offset downwards (#4) is lower (<) than upwards (#1), <u>decrement</u> the "RopeStrtch comp%" parameter.
 Rough guideline: For a 100m rise from bot(+1) to top(-1), adjust by ~15% per 1mm difference. For other rises: Proportional to rise, higher rises -> smaller corrections per mm deviation.
- #6) Repeat steps (#1)-(#5) until the deviation between both directions is < 0.6mm.

Kopesition comp // =											
100%		100%		70%		70%		60%		60%	
DOWN		UP	UP DOWN		UP		DOWN		UP		
ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset
2->1	-2,3	0->1	0,0	2->1	-1,9	0->1	-1,1	2->1	-1,5	0->1	-0,7
2->1	-2,1	0->1	0,0	2->1	-1,6	0->1	-0,9	2->1	-1,2	0->1	-1,6
7->1	-1,4			7->1	-1,6			7->1	-0,6	0->1	-1,1
7->1	-1,8			7->1	-1,5			7->1	-0,7		
Avg=	-1,9		0,0		-1,7		-1,0		-1,0		-1,1

Example (selects value 60%):

RopeStrtch.comp% -

Note1: Negative offset means car sill is below landing sill!

Note2: Landings #4-#6 were not available for starts (dummies), or deemed too close for a "long run".

4.10.4 Adjustment of spring effects for car load via "Duty_kg % of car"

Analog to 4.10.3 Adjustment of spring effects for rope via "RopeStrtch comp%", this adjustment procedure measures offsets (car sill - ldg sill) in landing bottom+1 with **~full load** in the car and brings the sill offsets to the same value for runs in UP and DOWN direction.

Pre-conditions for adjustment of "Duty_kg % of car":

As at the end of 4.10.3 Adjustment of spring effects for rope via "RopeStrtch comp%" but car is loaded to approximately full load (80% - 100%).

Adjustment procedure for "Duty_kg % of car":

- #1) Measure the sill offsets for two UP runs bottom -> bottom+1.If the results vary by >0.4mm, make more runs to establish a reliable average.
- #2) Measure the sill offsets for two DOWN runs bottom+2 -> bottom+1.If the results vary by >0.4mm, make more runs to establish a reliable average.
- #3) Measure the sill offsets for two long DOWN runs bottom+4 (or +5 etc.) -> bottom+1. If the results vary by >0.4mm, make more runs to establish a reliable average.
- #4) Calculate the average from step (#2) and (#3).
- #5) IF the average offset downwards (#4) is higher (>) than upwards (#1), <u>increment</u> the "Duty_kg % of car" parameter.
 IF the average offset downwards (#4) is lower (<) than upwards (#1), <u>decrement</u> the "Duty_kg % of car" parameter.
 Rough guideline: Start with 10% step, then asses the effect (reduction of gap between

Rough guideline: Start with 10% step, then asses the effect (reduction of gap between position in UP and DOWN dir). Scale next step accordingly..

#6) Repeat steps (#1)-(#5) until

A) the deviation between both directions is < 0.6mm or B) the "**Duty_kg % of car**" is >100% or <25%.

Example (selects value 25%):

Duty_kg 9	Duty_kg % of car:											
50%		50%		40%		40%		30%		30%		
DOWN		UP		DOWN		UP		DOWN		UP		
ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	ldg->ldg	offset	
2->1	-3,0	0->1	-1,3	2->1	-2,6	0->1	-2,1	2->1	-2,3	0->1	-1,4	
2->1	-3,1	0->1	-1,3	2->1	-2,5	0->1	-1,7	2->1	-2,3	0->1	-1,6	
7->1	-2,8			7->1	-2,8			7->1	-2,3			
7->1				7->1				7->1				
Avg=	-3,0		-1,3		-2,6		-1,9		-2,3		-1,5	

25%		25%	
DOWN		UP	
ldg->ldg	offset	ldg->ldg	offset
2->1	-2,1	0->1	-1,6
2->1	-2,3	0->1	-1,4
7->1	-1,8		
7->1	-2,1		
	-2,1		-1,5

Note1: Negative offset means car sill is below landing sill!

Note2: The last run 7->1 was omitted where the average was consistent enough to go to he next iteration.

4.10.5 Adjustment of direction dependency via "Vane Hysteres mm" and of leveling bias via "VaneBias (10) mm"

This procedure requires a suitable gage (=measurement tool) to measure car sill versus landing sill offsets with an accuracy of at least ~0.5mm.

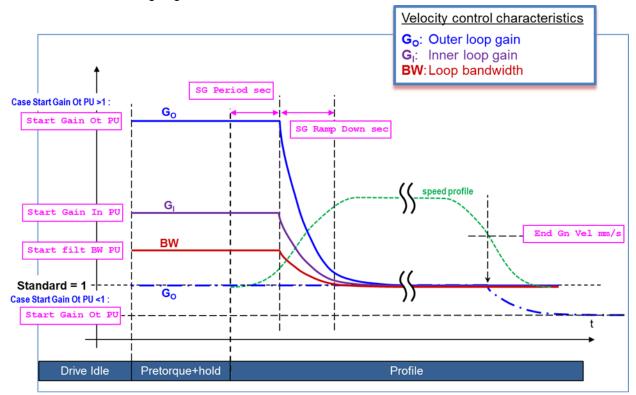
The leveling error measurements cited in this document are positive (e.g. +2.5mm) if the car sill is <u>above</u> the landing sill, negative (e.g. -1.5mm) if the car sill is <u>below</u> the landing sill.

Adjustment procedure:

- #1) Set Vane Hysteres mm to the contract value. If the adjustment steps 4.10.2 - 4.10.4 have been performed, use the settings selected in those steps.
- #2) Perform runs up and down into several (minimum=1, best=all) landings: After each run, record the leveling error of car sill versus landing sill.
 If the adjustment steps 4.10.2-4.10.4 have been performed, the levelling data of the final adjustment in each step (average per direction) can be re-used here.
- #3) Calculate the average leveling error in UP direction (err_up) over all measured landings and the average in DOWN direction (err_dn).
- #4) Increment the Vane Hysteres mm by half the difference: (err_up err_dn) / 2. <u>Decrement the VaneBias (10) mm by the mean: (err_up + err_dn) / 2</u>
- #5) Perform test runs to verify the new settings: The difference between the averages in UP and DOWN direction should be smaller.

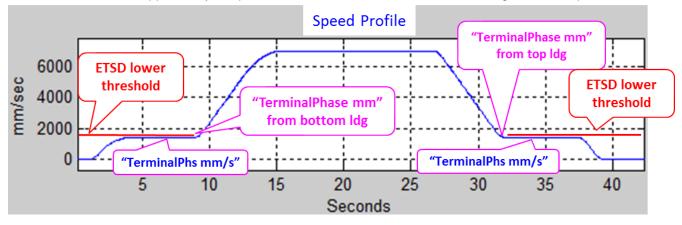
Example:

Vane Hysteres mm	1,0	Add (3,0 0,	2) /2 = 1,6 ->		
VaneBias (10) mm	10,0	Subtract (3,0	+ - 0,2) /2 =1,4 ->		
Levelling error "car sill - ldg sill" [mm]					
	UP	DOWN			
Landing 0:		0,0	VERIFY		
Landing 1:	+3,0	+0,5	NEW		
Landing 2:	+3,0	0,0	SETTING ->		
Landing 3:	+2,5	-1,0			
Landing 4:	+3,5	-0 , 5			
Landing 5:	+3,0				
average:	3,0	-0,2			


2,6 8,6	
UP	DOWN
	+0,2
0,0	+0,7
0,0	+0,2
-0 , 5	-0,8
+0,5	-0 , 3
0,0	
0,0	0,0

Idealized example, reality will include random variation !!

4.11 Start Jerk / Rollback Reduction


If discrete load weighing is being used, start jerk can be reduced by adjusting the parameters Start Gain Ot PU, Start filt BW PU, Start Gain In PU in menu **3-2 ADJUSTMENT**. Increase the parameter until either the start jerk is acceptable or the machine starts to produce noise at the start of the run. This parameter has two associated parameters SG Period sec and SG Ramp Down sec to control the duration of the bandwidth velocity control and the rate at which the nominal bandwidth is resumed respectively. Please see the figure below. A further reduction of the start jerk is possible by upgrading to an analog load-weighing device.

Note: Acceptable start jerk performance may not be acceptable for any settings of the start gain parameters when using an incremental encoder in a gearless system with discrete loadweighing. An adapter board can be installed on the GDCB called the Communication and Encoder Interface Board (CEIB) that will work with a sine/cosine encoder to get good start jerk performance with discrete loadweighing.

4.12 Reduced Terminal Speed (ETSD support)

The "Reduced Terminal Speed" feature is designed to support e.g. a low reduced stroke buffer speed that can otherwise not be supported by a 2-phase ETSD feature in combination with a high nominal speed.

Feature set up:

This feature can be configured via the following SVT parameters (M-3-5 PROFILE):

TerminalPhase mm: Length of reduced-speed zone before the terminal landing. TerminalPhs mm/s: Speed limit in reduced-speed zone before the terminal landing. Setting TerminalPhase mm to zero disables the "reduced terminal speed" feature and hides the parameter "TerminalPhs mm/s"!

Feature characteristics:

- 1. Normal runs with exactly known position will be performed such that only the parts inside the reduced-speed zones run at reduced profile.
- 2. Normal runs with inaccurately known position will stay at reduced speed as long as position is inaccurate and they are in 1/2LS.
- All other run types (CORR, RESC, INS, LEARN) will be limited to reduced speed inside the LS or when LS signals are compromised, not limited outside known LS (regardless of position being valid/accurate). With reduced ETSD speeds of >= 0.5m/s, this will only affect CORR runs, all other runs are limited to <=0.5m/s anyway.

Feature limitations/constraints:

- 1. A regular creep profile is not executed in target landings where reduced-speed profile is active.
- 2. Parameter "Creep Jerk 0/1" must be set to 1 (avoid timed decel at end of reduced profile). This is automatically set by the drive for "TerminalPhase mm" > 0.
- 3. For NTSD/ETSD/Buffer test, the "Reduced Terminal Speed" feature must be disabled ("TerminalPhase mm"=0), otherwise the CORR speed could be reduced in the 1/2LS during the test.
- 4. TerminalPhs mm/s must be at least 500mm/s below "Nom Speed mm/s" or (for Nom Speed <1m/s) half of "Nom Speed mm/s". **Attention**: The drive software enforces this when the Nom Speed parameter is reduced (even temporarily) and does not set TerminalPhs mm/s back to its original value! Also, the drive software enforces "TerminalPhase mm" < LS length.
- 5. TerminalPhs mm/s must be larger than Creep Speed mm/s. **Attention**: The drive software enforces this when the Creep Speed mm/s is changed.
- 6. NTSD will not take effect before ETSD for reduced terminal speed zone setups ETSD will trigger in NTSD test mode! This affects only NTSD at Nom Speed, not at CORR runs (limited to 2.0m/s).

7. Limit switches 1/2LS need to be long enough to allow deceleration from the LS edge down to reduced speed before the reduced-speed zone begins in the 3 scenarios described below. This needs to be ensured in the field!

Estimating additional LS length for "Reduced Terminal Speed" feature

There are three aspects in the "reduced Terminal Speed" feature that require additional length for 1/2LS. All 3 aspects intend to make sure that the reduced speed is reached when entering the reduced speed zone.

- #1) A CORRECTION run needs to decelerate (profile with jerk) to the reduced speed (if that is < CORR speed 2.0m/s) from the 1/2LS.</p>
- #2) A NOR run with uncertain mm-position (max. possible speed 4m/s) needs to decelerate (profile with jerk) to the reduced speed (if that is < 4.0m/s) from the 1/2LS.
- #3) A NOR run needs to fault-decelerate (in case of unexpected LS, profile without jerk) from Nominal Speed to the reduced speed from the 1/2LS.

Example Grande Arche with Nom Speed 6m/s, decel=1.0m/s², jerk=1.4m/s³, reduced speed=1.4m/s, reduced speed zone=9.0m

#1) Profile decel with jerk 2.0->1.4m/s:	2.2m
Minimum total LS length required:	2.2m + 9.0m = 11.2m
#2) Profile decel with jerk 4.0->1.4m/s:	9.0m
Minimum total LS length required:	9.0m + 9.0m = 18.0m
#3) Timed decel (no jerk) 6.0->1.4m/s:	16.7-1.1m=15.6m (see OPMAN LS table!)
Minimum total LS length required:	15.6m + 9.0m = 24.6m

While strictly speaking only 24.6m would be required, some extra margin (e.g. LS length 30m) would not hurt and could provide the degree of freedom e.g. to allow switching to a smaller decel rate of 0.8 m/s².

Note: The above values of 2.2m and 9.0m for deceleration with jerk profile have been derived from simulations. For comparison, these are the corresponding values for the timed deceleration (no jerk) that are provided in the "Minimum LS distance" table (section 4.7).

- timed decel (no jerk) 2.0->1.4m/s: 2.1-1.1m=1.0m (jerked decel 2
- timed decel (no jerk) 4.0->1.4m/s: 7.6-1.1m=6.5m

(jerked decel 2.2m = 220%, <- small delta v) (jerked decel 9.0m = 138%, <- large delta v)

5 Self-Commissioning Operation

5.1 Overview

The Self-Commissioning software functions are designed to automatically measure the *induction* motor parameters and adjust the service tool parameters in the drive to achieve a properly tuned drive/motor combination, with the correct magnetizing current, rotor time constant, and inertia (note: inertia can be determined for PM motor applications as well). The benefit of self-commissioning software is that it achieves this without the need to unrope the elevator, remove the motor or employ special test equipment. The software requires four values from the motor nameplate: Rated voltage, power, rpm, and frequency. All other parameters are computed or measured by the drive to achieve correct elevator operation at the contract speed.

Self-commissioning tests are run in three stages:

- The first stage is the locked rotor tests, where the drive adjusts the current regulator and measures the motor parameters. The motor does not turn during these tests, and the brake is not lifted. This stage is required if the motor parameters are not known beforehand.
- The second stage is a fine-adjustment of the rotor time constant and magnetizing current, to ensure that the rotor time constant and magnetizing current are set to correct values for running at contract speed. The second stage requires the installer to command high speed, multi-floor runs under control of the motion subsystem. It is important that the elevator reach contract speed during these runs, and that the car be empty. To ensure consistent and accurate measurements, all runs must be between the same two landings, e.g., from bottom to top, or from floor 2 to 8, etc.
- The third stage of self-commissioning is the inertia adjustment. The operator requirements for this stage are identical to those for the second, i.e., to command multi-floor runs under control of the motion subsystem.

THE ONLY SELF COMMISSIONING TEST THAT CAN BE PERFORMED WITH A PM SYNCHRONOUS MOTOR IS THE INERTIA TUNING!!

If the only available data on the motor is the nameplate data, the complete set of selfcommissioning tests should be run. On new equipment installations, where the motor parameters are factory-set, it is possible to run only the inertia adjustment.

The elevator runs during the second and third stage of self-commissioning may be commanded using the service tool interface to the controller. It is also possible, and may be preferable, to use the service tool to set up the controller to cycle the elevator up and down automatically. Allow for a 15 second interval between runs, and make sure that the elevator reaches full contract speed for at least 3-5 seconds during the run. The elevator controller may be set to 'Inspection" to temporarily halt the cycling, for example when it is time to save the service tool parameters (this is further described in the step by step procedure).

The self-commissioning stages were designed to run in sequence or as standalone tests. Each stage, however, relies on certain EEPROM parameters. These parameters should be obtained either through self commissioning tests or entered into the EEPROM by the installer. For example, the Fine-Tuning stage requires ($L\sigma$), also known as the motor transient inductance, in service tool parameter "Mtr Lsigman mH"^t in menu M34. This value can either be computed from locked rotor tests or, if known, entered manually by the installer. Either method is acceptable.

At the end of each self commissioning test, the user is given the opportunity to save the determined parameters to EEPROM automatically or to abort without saving. The determined parameters are available for inspection in menu M12 until the processor board is reset or the drive powered down.

NOTE 1: Do not unplug the service tool from the drive during the self-commissioning tests. The tests will abort when the SVT is reconnected, and all test data will be lost.

- NOTE 2: The drive service tool CANNOT be used to view dynamic displays such as current, torque or motor voltage while the self tuning tests are in progress (see following note).
- NOTE 3: To abort self-commissioning tests hit Module, Function or Set key on the service tool.
- NOTE 4: The drive will NOT accept PTR from the controller while in self commissioning mode unless it specifically asked for through the service tool during fine tuning and inertia tests. You MUST exit the self commissioning mode (see section 5.4.8 below) to run the elevator in normal, inspection or manual mode.

5.2 EEPROM parameters

The following is a list of all the EEPROM parameters determined by self commissioning (listed by test):

Test	Menu	Parameters
Locked Rotor	M31 M34	Inertia kg-m2 (estimate) Rtr Time Const s, Rated Mag I A, Peak Mag I A, Rated Trq I A, Rated Trq Nm, Mtr Lsigma mH, Ld mH, Lq mH, R Ohm.
Fine Tuning	M34	Rtr Time Const s, Rated Mag I A, Peak Mag I A, Rated Trq I A, Rated Trq Nm
Inertia	M31	Inertia kg-m2

All other EEPROM parameters, such as limit current, drive rating, pretorque trim, etc, must be set correctly as they are not self-tuned.

5.3 How do I do this

The following table is intended to help the user determine which self commissioning tests to run based on the available motor and hoistway data.

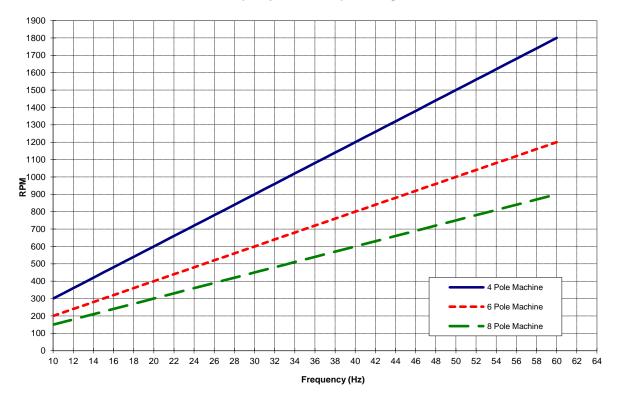
Situation	Tests to Run	Steps to take
Modernization job, no data available except for motor nameplate data and duty data. No controller connected, only manual mode elevator operation required.	Locked Rotor	Start with section 5.4.1. Stop before section 5.4.5.
Modernization job, no data available except for motor nameplate data and duty data. Controller is connected and operational	Locked Rotor, Fine Tuning, Inertia	Start with section 5.4.1. Perform all self commissioning tests.
Have reasonable estimate of motor parameters and current regulator parameters but do not know motor Lsigma (transient inductance)	Locked Rotor, Fine Tuning, Inertia	Start with section 5.4.1. Perform all self commissioning tests.
Have reasonable estimate of motor parameters and current regulator parameters and have	Fine Tuning, Inertia	Enter the following SVT parameters :M34 - LdmH, LqmH, ROhm, Number of

Situation	Tests to Run	Steps to take
reasonable estimate of		Poles,Rtr Time Const s,Rated Mag I
motor Lsigma (transient		A,Peak Mag I A,Rated Trq I
inductance) and inertia.		A, Rated Trq Nm, Mtr Shft Pwr
		kW,Rtd Mtr Spd RPM,Rtd Mtr Ln-Ln
		V, Rtd Mtr Freq Hz, Mtr Lsigma mH.
		M31- enters your best guess for inertia.
		Check that elevator runs in inspection or
		manual mode. If it does not start with section
		5.4.1, else start with section 5.4.5.
Elevator runs ok, but	Inertia	Enter your best guess for inertia in M31.
require better inertia estimate		Start with section 5.4.6.

5.4 Running Self-Commissioning Tests

5.4.1 Entering Auto Tune Mode

- 1. Use the SVT to access category M31 and hit the go-on key unti the parameter "Motor Type" is displayed. Set the parameter to 901.
- 2. Use the SVT to access category M31 and hit the go-on key until the parameter "Self Tune 0/1" is displayed. Set the parameter to 1.
- 3. Hit the go-on key to display the parameter "LR Ampl KP/Ki PU". Make sure that this parameter is set to 0.2. This parameter controls the amplitude of the test current. 0.2 corresponds to 20% of drive rated current.
- 4. Verify that 'Motor Nameplate Data' and 'Number of Poles' (see section 5.4.2) are entered correctly.
- 5. Go to section 5.4.3 to perform the 'Locked Rotor Test.'


5.4.2 Entering Motor Nameplate Data and Number of Poles.

1. Use the SVT to access category M34 and hit the go-on key to display the "Number of Poles" parameter. Enter the number of poles in the motor. The number of poles in a motor can be determined with the following formula :

number _of _poles = floor
$$\left(120 * \frac{\text{Rated}_frequency}{\text{Rated}_RPM}\right)$$

where Rated_frequency and Rated_RPM are the **nameplate** RPM speed and frequency respectively. **If number_of_poles results in a decimal number then round the number down to the nearest even integer** (4.11 would be entered as 4). Alternatively you can use the following graph to look up the rated RPM and frequency and match it to the **closest** 'pole' line:

Sheet: 39 of 213

RPM vs Frequency for different pole configurations

- 2. Hit the go-on key until the parameter "Mtr Shft Pwr kW" is displayed. Enter the rated power in kilowatts from the motor nameplate.
- 3. Hit the go-on key to display the "Rtd Mtr Spd RPM" parameter. Enter the rated speed in rpm from the motor nameplate.
- 4. Hit the go-on key to display the "Rtd Mtr Ln-Ln V" parameter. Enter the rated motor line-to-line rms voltage from the motor nameplate.
- 5. Hit the go-on key to display the "Rtd Mtr I Arms" parameter. If available, enter the rated motor current from the motor nameplate. If not known, leave the parameter to its default setting of zero.
- 6. Hit the go-on key to display the "Rtd Mtr Freq Hz" parameter. Enter the rated frequency in Hz from the motor nameplate.
- 7. Hit the go-on key to display the "Mtr Lsigma mH" parameter. Enter the motor transient inductance (Lsigma) if known or 0.001 if not known. The drive will determine this value during the locked rotor phase of the tests.
- 8. Hit the go-on until the "Low Volt Op 0/1" parameter is displayed. Enter 1 if the rated motor line to line voltage is less than or equal to 400 Vrms. Otherwise, set the parameter to zero.

WARNING: THE PARAMETERS TO BE ENTERED ARE THE MOTOR NAMEPLATE PARAMETERS. DO NOT ENTER THE CONTRACT PARAMETERS.

5.4.3 Initial Tests with Stationary Elevator (Locked Rotor Tests) – INDUCTION MOTOR ONLY!!

- 1. Power down the drive.
- 2. Establish the safety chain at the drive according to correct local practices. This may involve adding jumpers in the controller depending upon which controller is used. **Do not forget to remove these jumpers once the locked rotor tests are finished**.
- 3. Power on the drive.
- 4. After the safety chain is established, the signal "SAF" must indicate 1 in SVT menu M15 for 422-based controllers. For CAN-based controllers, both UIB and DIB must indicate 1 in SVT menu M15.
- 5. Use the SVT and access menu M71. To start the test, hit 'Go-On' on the SVT. The drive will now automatically tune the current regulators and measure the motor parameters. During the tests, the drive will display its progress on the service tool screen.
- 6. When the tests are finished, the SVT will display 'Lckd Rotor Tests / Complete Hit >'. Hit the go-on key to proceed.
- 7. The service tool will now display the data determined during the locked rotor test. To save the data to EEPROM, hit SHIFT-ENTER (this can be done at any time while vieweing the data). Otherwise hit the module, function or set keys to abort the test. If the saving operation is aborted, the determined parameters will not be saved to EEPROM but will be available for inspection in M12 (see section 5.4.7).
- 8. If a jumper was required to satisfy the safety chain in Step 2, power down the drive and remove the jumper. If you need to power the drive down to remove jumpers, first access M12 and write down the locked rotor test results as required in the data-sheet. These results will not be displayed in M12 once you cycle power to the drive (of course if you saved them to EEPROM, you can search for them in the regular service tool tree).

5.4.4 Checking Motor Phasing

- 1. After the locked rotor tests, the elevator should move in manual mode or inspection mode. Power up the drive, exit auto tune mode (see section 5.4.8) and check that the elevator runs by using manual or inspection mode.
- If the elevator fails to move and a motor overcurrent fault is logged, check the phasing of the motor with the appropriate procedure. One such procedure is outlined in [TIP1.1.12.0-1]

STOP HERE if you plan to run in manual mode only.

5.4.5 Motor Fine-Tuning Tests – INDUCTION MOTOR ONLY!!

- 1. If necessary, power on the drive. Ensure that the drive is in auto-tune mode see section 5.4.1
- 2. Disable hall calls, car calls and parking operations before proceeding. Also, disable doors so that passengers cannot enter the car.
- 3. Make sure that the four correct motor nameplate parameters are entered in M34.
- 4. If the locked rotor tests were not run or the parameters obtained not saved, make sure that the correct value of Lsigma (transient inductance) is entered in service tool parameter "Mtr Lsigma mH" in menu M34.
- 5. Before starting the test, select two floors between which you want to run. Ensure that the car is at the lower of the two floors (first requested run is up). If this is not the case, put

the drive in normal mode and move the car as necessary. Then re-enter auto tune mode (see section 5.4.1)

- 6. Access menu M72, and hit 'go-on to start the test.
- 7. When prompted by the SVT, issue an up call through the controller. Then, When prompted by the SVT, issue a down call through the controller.

OR – allow the elevator to cycle up and down while the drive collects data and adjusts the SVT parameters (cycle the elevator between the two selected floors).

It is required that the car reach contract speed for 3-5 seconds during these runs, and that the car be empty.

- 8. The last step will repeat several times (at least 4 cycles of up and down runs). A minimum of three cycles is required to determine the rotor time constant. One additional cycle is required to check the magnetizing current and determine the magnetizing inductance. If the magnetizing current requires adjustment, the rotor time constant must be re-checked, requiring additional up/down runs.
- 9. When the tests are finished, the SVT will display the results of the test. Hit the go-on key to proceed. At any time the data can be saved by hitting SHIFT-ENTER.
- 10. To save the data to EEPROM hit SHIFT-ENTER. Otherwise hit the module, function or set keys to abort the test. If the saving operation is aborted, the determined parameters will not be saved to EEPROM but will be available for inspection in M12 (see section 5.4.7).

START HERE to run Inertia test only

5.4.6 Inertia Adjustment – Induction Motor or PM Synchronous Motor (ONLY ACCEPTABLE TEST FOR PM SYNCHRONOUS MOTOR)

- 1. If necessary, power on the drive. Ensure that the drive is in auto-tune mode see section 5.4.1
- 2. Disable hall calls, car calls and parking operations before proceeding. Also, disable doors so that passengers cannot enter the car.
- 3. Before starting the test, select two floors between which you want to run. Ensure that the car is at the lower of the two floors (first requested run is up). If this is not the case, put the drive in normal mode and move the car as necessary. Then re-enter auto tune mode (see section *5.4.1*)
- 4. Access SVT menu M73 and hit the 'go-on' key to start the test.
- 5. When prompted by the SVT, issue an up call through the controller. Then, when prompted by the SVT, issue a down call through the controller.

OR – allow the elevator to cycle up and down while the drive collects data and adjusts the INERTIA parameter (cycle the elevator between the two selected floors).

- 6. Last step will repeat several times (at least 2)
- 7. When the tests are finished, the SVT will display 'Inertia Tuning / Complete Hit >'. Hit the go-on key to proceed.
- 8. The service tool will now display 'Hit Entr to Save'. To save the data to EEPROM hit SHIFT-ENTER. Otherwise hit the module, function or set keys to abort the test. If the saving operation is aborted, the determined parameter will not be saved to EEPROM but will be available for inspection in M31 (see section 5.4.7).

5.4.7 Parameter Display

- 1. Access SVT menu M12 to display parameters which were determined during the selfcommissioning tests.
- 2. Hit go-on or go-back to move back and forth between the different display parameters. Please note that some parameters may be zero if the test has not been performed yet or if the processor board was reset between tests.

5.4.8 Exiting Auto Tune Mode

1. Use the SVT to access M32 and hit the go-on key until the parameter "Self Tune 0/1" is displayed. Set the parameter to 0.

5.5 Troubleshooting Notes

The following is a list of the most common problems encountered while self commissioning the drive. Please refer to this list if there is a problem.

Symptom	Possible Cause	Steps to take	
The locked rotor test will not start.	The safety chain is not established.	Repeat Step 2 in section 5.4.3.	
Locked rotor test aborts.	Nameplate data is incorrect	Verify that the motor nameplate data are entered correctly. Re-run locked rotor test (M71). Also see note 1 at the end of Section 5.5.	
Drive does not accept a run command from the controller and no faults are declared.	The SVT 'Module' key has been hit.	Re-run the test. Hitting the 'Module' key will abort the self-commissioning test and put the drive into shut-down mode.	
	The SVT was unplugged during the test and plugged back in.	Re-run the test. Unplugging the service tool has the same effect as hitting the 'Module' key.	
Fault: Inverter OCT Motor Overload	Motor is phased improperly.	Check motor phasing and re-run test.	
	Motor nameplate data is incorrect, or the elevator duty is greater than the motor rating.	Check for errors in motor nameplate parameter data M34. Specifically, make sure that the data entered is the nameplate data and not the contract data (unless they are the same). Also, verify that the car is empty during tests.	

Fault	Possible Cause	Steps to take
059 RTC is zero	A serious problem with internal drive software has occurred	Restart locked rotor tests. Also see note 1 at the end of Section 5.5.
065 Wrong direct	The car moved in the up direction when the drive SVT asked for a down run or viceversa	Run the car in the direction asked for by the service tool. It may be advantageous to restart the test.
066 PTR Timeout	The user waited longer than two minutes to enter a PTR command from the controller	Start test over. The user has two minutes to enter a car call and run the elevator or a fault will be logged.

067 Car nt empty	The car is not empty or the overbalance is wrong	Check that the car is empty and/or the overbalance and run the test again	
071 FT Itq !comp	The torque current was not computed at the end of fine tuning tests. Possible problem with magnetizing inductance.	Restart fine tuning tests.	
073 Run too shrt	The run was too short	Run the car between two floors that are	
	so that there was not	farther apart so that the car reaches constant	
	enough time at speed.	speed for at least 2 seconds.	
074 Drive Fault	A drive fault was	View the event log and determine which fault	
075 Drive SAS	logged, not related to	caused the drive fault and troubleshoot	
	self commissioning.	accordingly.	
079 Kp RTR Fault	The LRT KP test timed-out because the drive state did not reach RTR.	This fault should not occur and may indicate a software bug. If this fault is encountered, then check event log for other events, and notify Farmington engineering.	

The following faults can occur during locked rotor tests. The occurrence of any of these faults indicate a serious problem with the drive and they should, in theory, never be observed:

Fault	Possible Cause	Steps to take
050 KP negative	The cause of any of	There is no action to be taken by the user.
052 KI negative	these faults is a bad	A fault of this nature should be reported to
054 LSIG negativ	feedback from the DSP	Engineering
055 RTCr negativ	This usually indicates a	Also see note 1 at the end of Section 5.5.
057 SWEEP negatv	severe problem.	
058 RTC negative		
059 RTC is zero		
060 RTC negative		

The following warnings indicate that the locked rotor tests have taken longer to converge than usually required. The usual course of action for these warnings is to complete the tests, save data to EEPROM and try the fine tuning tests. If the obtained parameters are not too far off the actual parameters, the fine tuning stage will recover and converge to the correct parameters. As a last resort, the parameters "Lr Ampl KP/Ki PU" and "LR Ampl RTC PU" can be increased from their default settings and the tests run again.

Warning	Possible Cause	Steps to take
051 KP not conv	Bad nameplate data.	Finish the tests and save the
053 KI not conv	Bad signal to noise	obtained data to EEPROM. Fine tuning
056 RTCr not cnv	ratio when getting data.	Will recover from slightly off locked rotor data.
061 RTC not conv		Also see note 1 at the end of Section 5.5.

The following faults indicate a serious problem with the calculation of the operating point for the motor (the relationship between voltage, speed and frequency) during the final stage of locked rotor tuning.

Fault	Possible Cause	Steps to take
062 ID&V diverge	Possible problems with magnetizing or transient inductances calculated in previous	To invoke an alternative calculation, hit SHIFT-ENTER. -or- Set "Rated mtr I Arms" (if known) and try to

Fault	Possible Cause	Steps to take
	tests.	rerun entire locked rotor tests. Also see note 1 at the end of Section 5.5.
063 NO Op Point	The nameplate data is not correct or there is a problem with magnetizing or transient inductances calculated in previous tests.	Check nameplate data, rerun entire set of locked rotor tests. Also see note 1 at the end of Section 5.5.
064 Imag>drv Rtd	The nameplate data is not correct or there is a problem with magnetizing or transient inductances calculated in previous tests.	Check nameplate data, rerun entire set of locked rotor tests. Also see note 1 at the end of Section 5.5.

The following faults indicate a problem in the convergence of the fine tuning or inertia tests. The fine tuning and inertia tests perform up and down runs to gather data. One set of up and down runs is considered one try. The number of tries (and therefore up and down runs) is limited because the tests should converge fairly quickly. If these tests do not converge then there is probably a problem in the fine tuning tests. The steps to take for these faults are difficult to determine until we get some more experience.

Fault	Possible Cause	Steps to take
068 FT RTC !conv	Rotor time constant fine tuning took longer than ten tries.	Restart fine tuning tests.
069 FT not conv	The drive took longer than five rotor time constant/magnetizing current sets to fine tune.	Restart fine tuning tests.
070 FT ID ! conv	Magnetizing current fine tuning took longer than ten tries	Restart fine tuning tests.
072 Ineria !conv	Inertia tuning took longer than 10 tries	Restart inertia test.

Note 1: Troubleshooting when Low Voltage Operation is Active

If the parameter "Low Volt Op 0/1" is set to 1 and the locked rotor test fails, try changing the parameter "Low Volt Op 0/1" to 0 and repeating the locked rotor test. After the locked rotor tests, the "Low Volt Op 0/1" parameter should be set back to 1.

Document: 55661

Sheet: 45 of 213

1. Installation Data	3				
Location	:				_
Date	:				_
Installer	:				_
2. Hoistway Data					
Duty Load	:	kg	Machine (e.g. 18ATF)	:	
Duty Speed	: 	m/s	Rise	:	m
Gear Ratio	:	-	Sheave Diameter	:	m
Roping (1:1 or 2:1)	:	-	Guides (Slide/Roll)	:	
3. Drive Setup Dat	a				
M11 GDCB-SW SCN	:	-	M31 Drive Type	:	Amps
M31 Rated rpm	:	rpm	M31 AC Main Vrms	:	Vrms

If you already have parameters for this system, i.e. you are only testing the software or you want to double check your parameters with self-commissioning complete the following section with the existing parameters. If this is not the case then proceed directly to the Motor Data Section

4. Existing Drive Parameters Affected By Self Commissioning					
M31 Inertia kg-m2	:	kg-m2	M34 Rtr Time Const s M34 Rated Trg I A	:	S
M34 Rated Mag I A	:	A		:	A
M34 Rated Trq Nm	:	N-m	M34 Ld mH	:	mH
M34 R Ohm	:	Ohms	M34 Lq mH		mH

Document: 55661

Sheet: 46 of 213

5. Motor Data (from nameplat	e – enter in S	/T M34)			
: Manufacturer	M	odel No.	:		_
M34 Mtr Shft Pwr kW :	kW M	34 Rtd Mtr Ln-Ln V	:		V
M34 Rtd Mtr Spd RPM :		34 Rtd Mtr Freq Hz	:		Hz
M34 Rtd Mtr I Arms	Arms	34 Low Volt Op 0/1			0/1
6. Self-Commissioning Proce	ss Data				
Test M72 RTC Fine Tuning	г	est M73 Inertia Tunin	a		
Length of Run :		ength of Run	:		
# UP/DOWN :		# UP/DOWN	:		-
<i></i>			·		-
7. Self-Commissioned Param	eter Values				
M12 LR Motor L :	mH M	12 LR Motor R Ohm	:		ohm
M12 LR Lsig mH :	mH M	12 LR Rtc Re s	:		sec
M12 LR Rtc Im	sec M	12 LR Lphi Im			mH
M12 LR Lphi Re mH :		12 LR Rated Mag I A	:		_ A
M12 LR Rated Trq I A :		12 LR Rated Trq n			_N-m
M12 LR Inertia kg-					
M12 Fine Tune RTC :	S	12 Fine Tune Imag A	:		A
M12 Fine Tune Lphi :	H	12 Fine Tune Itrq A	:		_ A
M31 Inertia kg-m2 :	kg-m2 M	34 Rated Trq Nm	:		_N-m
M12 Fine Tune Volt V :	V				
8. Installer Comments					
After self-commissioning, is the eleva If NO, what is wrong?	or performance C	DK? YES NO			
How difficult was self-commissioning	to use? Easy	1 2 3	4	5	Hard
List any faults that occurred during Se	If-Commissioning	:			

6 Service Tool

The Service Tool (SVT) is the user's access to the subsystem software and is used to view and change parameters in EEPROM, to view run-time data, and to examine the Event Log. The menu categories are displayed in the following format:

In this example, the user is currently in menu category 4 and has the choice of entering menu category 41 by either pressing 1 or by pressing the ENTER key sequence. Other menu categories are accessible by pressing the GO ON key or by navigating with any of the following keys:

Key Sequence	Description	Example: E Key Seque		Example Key Seq	
MODULE	Resets the display to the main system menu. This key (designated "M") followed by "4" (in 422 type systems; "2" for CAN systems) navigates to the first category of the first-level drive menu (see table on next page).	-		DRIVE SYST	'EM <>
FUNCTION	Resets the display to the first category of the first-level drive menu (except when the display is at the <i>system</i> <i>menu</i>).	_		MONITOR	1 <>
SET	Navigates <i>up</i> one level in the menu tree.	Duty Speed	mm/s 1780	SETUP	3-1 <>
GO ON	Scrolls <i>forward</i> through menu categories.	MONITOR	1 <>	EVENT LOG	2 <>
SHIFT- GO BACK	Scrolls in <i>reverse</i> through menu categories.	EVENT LOG	2 <>	MONITOR	1 <>
SHIFT- ENTER	Navigates <i>down</i> one level in the menu tree.	MONITOR	1 <>	STATUS	1-1 <>
1 through 9	Navigates <i>down</i> one level in the menu tree according to the selected number ('3' is used as the example).	MONITOR	1 <>	SETUP	3-1 <>
CLEAR	Clears one digit when entering a new parameter value.	Duty Load 1000>	k 123XX	Duty Load 1000>	k 12XXX

6.1 Service Tool Access Level

The drive has multiple levels of service tool feature access. The access level of the tool the user has connected to the drive determines the access level that will be granted to the user. The levels of access are:

L1 Access	Level 1 service tool access – includes the service tool features required to maintain the elevator
L2 Access	Level 2 service tool access – includes the service tool features required to install the elevator
L3 Access	Level 3 service tool access – includes the service tool features restricted to trained remote experts

The only exception is when a remote administrator temporarily raises the access level of the drive to L2, allowing a user with a L1 tool connected locally in the machine room to gain L2 access.

Note: In CAN-based systems, the drive supports the ZKIP (Zero Knowledge Interactive Proof) concept allowing remote SVT access from the drive's SVT port to other components that require authentication (e.g. GECB).

6.2 Menu Tree

The following table shows the service tool menu tree for the drive subsystem and the access levels.

System Level Menu	First Level Drive Menu	Second Level Drive Menu	Access Level
DRIVE SYSTEM	1 MONITOR	1-1 STATUS	1
		1-2 MOTOR	1
		1-3 MOTION	1
		1-4 INVERTER	1
		1-5 DISCRETES	1
		1-6 METRICS	1
		1-7 VANES	2
		1-8 ENGINEERING	3
	2 EVENT LOG	2-1 VIEW CURRENT	1
		2-2 VIEW SAVED	1
		2-3 CLEAR LOG	1
		2-4 CLEAR BLOCK	1
		2-5 RESET DSP	1
		2-6 CLEAR COUNTS	2
	3 SETUP	3-1 CONTRACT	2
		3-2 ADJUSTMENT	1
		3-3 BRAKE	2
		3-4 MACHINE	2
		3-5 PROFILE	2
		3-6 FACTORY	2
	4 LANDINGS	4-1 LEARN RUN	1
		4-2 LANDG TABLE	2
		4-3 FIND BOTLDG	1
	5 TEST	5-1 FAN TEST	1
		5-2 TURNOVR TST	1
		5-3 BRAKETRQ TST	2
		5-4 RESERVED	-
		5-5 OPT ARO TEST	2
		5-6 BUFFER/ETSD	1
		5-7 NTSD TEST	1
		5-8 OVERSPD TST	1
	6 ENGINEERING	6-1 ENG ADJUST	2
		6-2 ENG TEST	3
		6-3 DAC	3
		6-4 I2C EEPROM	2
	7 SELF-COMM	7-1 LOCKED ROTOR	2
		7-2 FINE TUNING	2
		7-3 INERTIA	2

6.3 Monitor Menu

The Service Tool can be used to display parameters, which are either measured values of external quantities, or values that are computed internally. The service tool does partial updates to the display every 40ms.

An overview of all parameters is listed below. Not all parameters may be visible or accessible. Visibility and accessibility are listed in the table below. Visibility is explained further in a following Section.

Display Text	Visibility	Access Level
1-1 STATUS		
NORMAL IDLE UP	ALL	1
Regen 60A Ver 1	ALL	2
Package s/n	el2C	2
PBX_INV s/n	el2C	2
PDB_II s/n	el2C	2
PBX_CONV s/n	el2C	2
GDCB-SW SCN	ALL	1
GDCB-SW CRC	ALL	1
Primary Ldr SCN	ALL	1
Primary Ldr CRC	ALL	1
CPLD Version	ALL	1
CAN ICD type	CAN	2 2
Hitch LoadW SCN	CAN+ LW2	2
UCM-EN LIB SCN	CAN and UCM-EN on/off=1	2
es MONITOR_UCM	CAN+ UCM-EN on/off=1	2
Clock	ALL	1

Display Text	Visibility	Access Level
1-2 MOTOR		
BrkTrq:%Load Iq	BTT	2
BT/kgm:Rate Ref	BTT	2
P(m) m/m A V	ALL	
InvNomLmt: % A	JIS	2
InvRevLmt: % A	JIS	2
Rel Lmt ActLmt A	JIS	2
PwrFS(.1Kw) Pwr%	CAN	2
Motor: RPM	ALL	1
Mtr:Arms Vrms	ALL	1
Mtr: Hz kW	ALL	1
Mtr: Id Iq	ALL	1
Mtr: Vd Vq	ALL	2
MagErr1 MagErr2	PM	2
Lrt: Ld Lq mH	PM	2
Lrt:L min/max mH	PM	2
LR Motor L mH	SELF	2
LR Motor R Ohm	SELF	2
LR Lsig mH	SELF	2
LR Rtc Im s	SELF	2
LR Rtc Re s	SELF	2
LR Lphi Im MH	SELF	2 2 2 2 2 2
LR Lphi Re mH	SELF	2
LR Rated Mag I A	SELF	2
LR Rated Trq I A	SELF	2
LR Rated Trq Nm	SELF	
LR Inertia kg-m2	SELF	2
Fine Tune RTC s	SELF	2
Fine Tune Imag A	SELF	2 2
Fine Tune Lphi H	SELF	
Fine Tune Itrq A	SELF	2
Fine Tune Volt V	SELF	2
PrF NTSD Tim Lmt	OVF	2

Display Text	Visibility	Access Level
1-3 MOTION		
Vel: Ref Fbk	ALL	2
Pos: Fbk Target	CAN	2
ToTgt Over T200	CAN	2
ESTOP @ mm/s ->	ALL	1
BrkDelay BrkStop	ALL	2
RopeSlip TotSlip	CAN	1
BLOn Max Min Act	ALL	1
BLOffMax Min Act	ALL	1
BS off Max Act	ALL	1
Pos: DTG Start	CAN	2
EncPulse RPM	ALL	2
PG: Acc SD	CAN	2
Lwabs:kg %	CAN and	1
	LW1/	
	LW2	
Lwimbal:kg %	ALL	2
LW: Fbk % Adj %	DLW	2
Unbalance % kg	ALL	2 2 2 2 2 2 2 1
BeltCmp:Iq A	CAN	2
BeltCmp:Slp mA/m	CAN	2
BeltCmp:Offset A	CAN	2
Rllbck: mm Num	CAN	
RbTrgt: mm Num	CAN	2
Vel Entering DZ	CAN	1
Braking Dist mm	ALL	2 2
HitchLw: Empty:	CAN+	2
	LW2	
HitchLwSensor:	CAN+	2
	LW2	
PT LdT Iref Ld%	CAN	2
Data Thr Num LWS	LW2	2
LSC LDZ 1LS 2LS	CAN	1

Display Text	Visibility	Access Level
1-4 INVERTER		
Inp:Vrms Vdc	ALL	1
Ac/Dc cal fctr %	LVO	2
Cnv:Vrms Arms	ALL	2
Cnv: Id Iq	ALL	2 1
Temp:Cnv Inv	ALL	
Fan Duty %	NOT_OVF	2
BW(Hz):Cnv Inv	ALL	2 2 2
Cnv Reg Freq(Hz)	ALL	2
Inv Reg Freq(Hz)	ALL	
Brake Current A	IBRK	1
Battery Volts V	BAT	1
Brake Volt PWM %	DG_OVF_B RK_BPCB_V	2
BkCur:Ref Fbk	OVF_BRK	2 2
Brk kp ki	DG_OVF_B RK_BPCB_A	2
Brk Vdc V Duty%	OVF_BRK	2
1-5 DISCRETES		
PTR RTR LB BL	ALL	1
DL DF SAS	ALL	1
BS1 BS2 BY BST	ALL*	1
SX DBD SNO SAF	ALL	1
MAN MUP MDN	422	1
MX PX DX BX	ALL	1
UP DN RG DS	ALL	1
UIS LV1 LV2 DIS	CAN	1
FLR NCF CTF ATF	CAN	1
1LS 2LS UIB DIB	CAN	1

ALL/CAN

ALL

JIS

JIS

ALL

OVF

JIS

OARO

CAN

JIS_CAN

JIS

1

2

1

1

1

1

1

1

1

1

1

RSW PFL UPS DBR

SHK BAT EAR SUS

RLM RLD BTT BTC

MOC BOD CZO FAN

UDX ETS SSB OEN

SSX SMG SR1 EMG

SLV RCF LV1 LV2

FLR Mid EQAR-R/S RST RSC SPM

AR1/2 CrF CrS

DS DS1 DS2 FLR

Display Text	Visibility	Access Level
1-6 METRICS		
ALWA_DISPLAY	ALWA	1
Flight Time	ALL	1
Flight Length mm	ALL	1
Number of Runs	ALL	1
Runs Since Event	ALL	1
Max AC Main Vrms	ALL	2
Max Temp C	NOT_OVF	2
Max DC Bus V	ALL	1
Max Motor Arms	ALL	2
Max Cnv Arms	ALL	2
Cap Time In Use	ALL	2
Fan Time In Use	NOT_OVF	2
Tot. Time In Use	ALL	2
Metric E2 Writes	ALL	2
Event E2 Writes	ALL	2
Position @pwroff	CAN	1
OMU Prohibited	ALL	2
LW % @pwroff	CAN	1
Max Enc Cnt	ALL	2
DDP sec	ALL	1
ARD DDP sec	ALL	1

1-7 VANES		
SlipMax mm ldg h	CAN	2
SlipRateMax mm/h	CAN	2
Slip Mitigation	CAN	2
RestTime now max	CAN	2
PrsSpikesFilterd	CAN	2
last SpikeLength	CAN	2
lastDeviation	CAN	2
lastCorr @mm/s2	CAN	2
avgDevInRun	CAN	2
avgCorrInRun	CAN	2
maxDevInRun @ldg	CAN	2
maxCorInRun @ldg	CAN	2
Offset UIS 0.1mm	CAN	2
Offset 1LV 0.1mm	CAN	2
Offset 2LV 0.1mm	CAN	2
Offset DIS 0.1mm	CAN	2
LS1 length mm	CAN	2
LS2 length mm	CAN	2
LS length min mm	CAN	2
AHC fault count	CAN	2
AHC Permissive	CAN	2
AHC Pos Delta mm	CAN	2
AHC: Car Mach	CAN	2
AHC: Kd used	CAN	2

Display Text	Visibility	Access Level
1-8 ENGINEERING		
Test Variable 1	ALL	3
Test Variable 2	ALL	3
Test Variable 3	ALL	3
Test Variable 4	ALL	3 3 3
Test Variable 5	ALL	3
Test Variable 6	ALL	3
CPU:Max% Avg%	ALL	3
Tsk 1ms% 10ms%	ALL	3
Cnv% Inv% All%	ALL	3
E2 Load Time ms	ALL	3 3
Stack Used Max%	ALL	
Vel Scale mm/s	ALL	3 3 3
Drv I Scl Rated	ALL	3
MagPos /LRT eDeg	PM	
ADC:gain% offset	ALL	3
Reactor I Arms	ALL	3 3 3
Inert used kg-m2	ALL	
mm @accumEncPls	ALL	3
Vel Reg Hz	ALL	
Cnv Reg Hz	ALL	3
VTE Parameters	CAN	3
VTE Dtbc:est mea	CAN	3
VTE Dbc:HyAcLgLd	CAN	3
VTE MaxDevFrmNom	CAN	3
VTE MaxResidl SE	CAN	3
VTE MaxResidl OE	CAN	3
BSLP 3Margin mm	CAN	3

6.3.1 Parameter Visibility Some of the display parameters are not always visible in the SVT. The visibility, listed in the table in the previous Section, is explained in more detail in the following table.

Abbreviati on	Visibility
ALL	All configurations.
422	Only if Interface Type = 0
JIS	Only for "JIS Function $0/1$ " = 1 or 2
313	or 234G, 416G, 428G or 460G drives .
CAN	Only if Interface Type = 1
el2C	Only if drive uses power boards with
0120	enhanced I2C EEPROM storage capability
LW1	Only if Load Weigh Type = 1
LW2	Only if Load Weigh Type = 2
IBRK	Only if internal brake current feedback is
	supported in the drive hardware
BAT	Only if battery mode
PM	Only if PM motor
SELF	Only if Auto Tune = 1
DLW	Only if Load Weigh Type = 3
ALWA	Only if ALWA Config = 1
LVO	Only when Low Voltage Operation active
OVF	Only for 234G, 416G, 428G and 460G
	drives
NOT_OVF	Excepts the 234G, 416G, 428G and 460G
	drives
OVF_BRK	Only for 234G, 428G and 460G drives with
	Brake control by "BCM present 0/1 = 1", or
	"Int Brk Type 0-4 = 2"
OVF_BRK	Brake control by "BCM present 0/1 = 1", or
_BPCB_A	"Int Brk Type 0-4 = 2"
OVF_BRK	Only "Int Brk Type 0-4 =4 "
BPCB_V	
OARO	Only if Optimized ARO enabled.
BTT	Only if Brake Torque test active
JIS_CAN	Only for "JIS Function $0/1$ " = 1
	And "Interface Type = 1"
	Except OVF412RCR drive

6.3.2 Display Format

The display menu can show 1, 2, or 4 variables at the same time. The display will look like the following when one parameter is displayed:

GDCB-SW SCN	
AAA30924CAA	

When two parameters are displayed:

you.	
Mtr:Arms	Vrms
32.0	500.0

When four parameters are displayed:

PTR	RTR	LB	BL	
1	1	1	1	

The following sections give detailed explanations for each display parameter.

6.3.3 1-1 STATUS

SVT Display	Description
NORMAL IDLE UP	Motion Command Mode (cccccc)
<rsc up=""> 00</rsc>	NO RUN - No run command
	NORMAL - Drive waits for a run command
	from TCBC-type controller.
cccccc llllll dd	RELEVEL - Relevel run
<ttt yy=""> ff</ttt>	ERO - Electrical Recall Operation
	CORR - Correction Run
	RESCUE - Rescue Run
	LEARN - Learn Run
	MRO - Manual Rescue Operation
	MRO - Manual Rescue Operation TCI - Top of Car Inspection
	MCSS - Run command from MCSS-type controller
	MAN - Manual Mode
	DAT - Run command from Data Acquisition Tool
	Motion Logic State (IIIIII)
	PWR_DN – Power Down RUN - Running
	PRECHG – Precharge PTR - Prepare to run
	SHUTDN – Shutdown LF_BRK - Lift Brake
	NO_SAF - Wait For Safety DECEL - Stopping
	IDLE - Idle DR_BRK – Drop Brake
	TARGET – At Target
	Car Direction (dd)
	UP - Up direction
	DN - Down direction
	No direction
	Motion Command from TCBC-type controller (tttt)
	-WT - WAIT, the drive waits for the next run command
	<tci -="" car="" inspection<="" of="" th="" top=""></tci>
	<ero -="" electrical="" operation<="" recall="" th=""></ero>
	<cor -="" correction="" run<="" th=""></cor>
	<rsc -="" rescue="" run<="" th=""></rsc>
	<goto -="" floor="" normal="" number<="" run="" th="" to=""></goto>
	<rel -="" releveling<="" th=""></rel>
	Commanded Direction (yyy)
	UP> - Up direction
	DN> - Down direction
	ST> - Stop
	EN> - Enable
	Current Floor (ff)
	Displays the current floor of the car

Regen 60A Ver 1	1 st line: Currently selected drive type:
480V/ 60A	Regen 25A Ver 1 - 25A Regenerative Drive (MAN)
	Regen 40A Ver 1 - 40A Regenerative Drive (MAN)
	Regen 60A Ver 1 - 60A Regenerative Drive (MAN)
	Regen 90A Ver 1 - 90A Regenerative Drive (MAN)
	Regen 120A Ver 1 - 120A Regenerative Drive (MAN)
	Regen 15A Ver 2 - 15A Regen Drive (MAN, el2C)
	Regen 20A Ver 2 - 20A Regen Drive (MAN, el2C)
	Regen 20A Ver 2.1 - 20A V.2.1 Regen Drive (el2C)
	Regen 30A Ver 2 - 30A Regen Drive (MAN, el2C)
	Regen 30A Ver 2.1 - 30A V.2.1 Regen Drive (el2C)
	Regen 30A Ver 2.2 - 30A V.2.2 Regen Drive (el2C)
	Regen 40A Ver 2 - 40A Regen Drive (MAN, el2C)
	Regen 40A Ver 2.1 - 40A V.2.1 Regen Drive (el2C)
	Regen 40A Ver 2.2 - 40A V.2.2 Regen Drive (el2C)
	Regen 60A Ver 2 - 60A V.2 Regen Drive (el2C)
	Regen 120A Ver 2 - 120A V.2 Regen Drive (el2C)
	Regen 160A Ver 2 - 160A V.2 Regen Drive (el2C)
	Regen 280A Ver 1 - 280A V.1 Regen Drive (MAN)
	Regen 340A Ver 1 - 340A V.1 Regen Drive (MAN)
	Regen 600A Ver 1 - 600A V.1 Regen Drive (MAN)
	Regen book ver 1 - book v. I Regen blive (IVIAN)
	2 nd line: indicates max. line voltage and max. output current.
	Note: (MAN): manually set; see parameter "Drive Type"
	(el2C): auto- detected; for drives with el2C EEPROM
	storage capabilities.
	If drive type auto- detecting fails then an error
	message will be displayed instead:
	message will be displayed instead.
	Package setting
	undefined
	Note that some drives support both methods of drive type setting depending
	on power board (HVIB) version.
Package s/n	Package serial (barcode) number (example)
244629000003	If the EEPROM is unreadable or if the stored string is non-ASCII then a row
	of stars are displayed instead of the serial number.
PBX INV s/n	1 st line: Name of power board 1 (if available):
244629000003	PBX INV - for 60A V.2
	PBX_BIDI(I) - for 120A and 160A V.2
	(PBX_BIDI; MX1 assembly)
	HVIB - for 15A, 20A, 30A and 40Å V.2
	HVIB_II - for 20A, 30A, and 40A V.2.1, 30A and 40A V.2.2
	2 nd line: Serial (barcode) number of this board (example).
	If the EEPROM is unreadable or if the stored string is non-ASCII then a row
	of stars are displayed instead of the serial number.
PDB II s/n	1 st line: Name of power board 2 (if available):
244629000003	PDB_II - for 60A, 120A and 160A V.2
	2 nd line: Serial (barcode) number of this board (example).
	If the EEPROM is unreadable or if the stored string is non-ASCII then a row
	of stars are displayed instead of the serial number.
L	

PBX_CONV s/n	1 st line: Name of power board 3 (if available):	
244629000003	PBX_CONV - for 60A V.2	
	PBX_BIDII - for 120A and 160A V.2	
	(PBX_BIDI; MX2 assembly)	
	2 nd line: Serial (barcode) number of this board (example).	
	If the EEPROM is unreadable or if the stored string is non-ASCII then a row	
	of stars are displayed instead of the serial number.	
GDCB-SW SCN	GDCB software version number (see software release document)	
AAA30924CAH		
GDCB-SW CRC	GDCB software CRC32 checksum (see software release document)	
8FDBAC6B		
Primary Ldr SCN AAA31013AAE	Primary Loader software version number (see software release document).	
Primary Ldr CRC	Primary Loader software CRC32 checksum (see software release	
8FDBAC6B LOCK	document).	
CPLD Version	CPLD version number.	
8	CPLD version number.	
CAN ICD type	Shows the ICD version the drive's query at power up has determined for use	
10	in the OPB interface to the controller.	
	1: "Legacy" interface (no ABL nor ARO, pos retention SPBC)	
	10: Supports ABL, pos retention via GECB or SPBC (no ARO)	
	11: ICD10 + TCI limit in drive + hitch LW	
Hitch LoadW SCN	SCN of Hitch Load Weighing Device	
UCM-EN LIB SCN	Software version number of the TÜV certified library module implementing	
G1130879AAA	the UCM-EN functionality.	
es MONITOR_UCM	Unintended Car Motion Monitoring:	
dw DFC DBP	UCM Monitoring State (uuuuuuuuuuuu)	
	,	
	NO_UCM_CHECK - UCM monitor inactive, leaving DZ will not cause blockage	
ee uuuuuuuuuuu	MONITOR_UCM - UCM monitor active, leaving DZ will cause	
ww fff bbb	blockage	
	UCM_FAULT! - UCM blockage active	
	-	
	Safety Chain (SFC) signals sent by GECB:	
	SFC status before door chain: ES signal (ee)	
	es - Safety Chain closed in before door chain (="ES	
	switch inactive")	
	ES - Safety Chain open before door chain	
	signal unknown	
	(e.g. CAN msg missing)	
	SFC between landing and car door switches: DW (ww)	
	DW - Safety Chain closed at end of hoistway door chain	
	dw - Safety Chain open at end of hoistway door chain	
	signal unknown	
	(e.g. CAN msg missing)	
	SFC after car door switches: DFC (fff)	
	DFC - Safety Chain closed at end of door chain	
	dfc - Safety Chain open at end of door chain	
	signal unknown	
	(e.g. CAN msg missing)	
	State of Door Bypass: DBP (bbb) DBP - Door Bypass closed	
	dbp - Door Bypass open	
	signal unknown (e.g. CAN msg missing)	

Clock	Time since POR.
	Format: DAYS:HOURS:MIN:SEC:10MSEC.

6.3.4 1-2 MOTOR

SVT Display	Description
BrkTrq:%Load Iq	This monitor is for "Brake maintained torque".
	%Load - Set parameter in percent
	Iq - q-axis motor current vector (Iq_reference) (Arms)
BT/kgm:Rate Ref	This monitor is for "Brake maintained torque".
21, 119	Rate - Brake maintained torque of 100% load (kgm)
	Ref - Torque reference for Brake Maintain Test
P(m) m/m A V	P(m) - Running distance by the encoder (m)
2 (11) 11, 11 21	m/m - Velocity feedback as measured by the encoder (m/min)
	A - Motor current (Arms)
	V - Motor voltage (Vrms)
InvNomLmt: % A	% - Displays the value of "Inv I Limit %"
	A - Displays effective current by "Inv I Limit %".
InvRevLmt: % A	% - Displays the value of "Inv ReLe Ilimit%"
	A - Displays effective current by "Inv ReLe Ilimit%"
Rel Lmt ActLmt A	Lmt - Displays effective current by "Inv ReLe Ilimit%"
NCT DINC ACCDING A	ActLmt – Displays of Actual Drive limit in the run
PwrFS(.1Kw) Pwr%	This data is used for regen CAN message publication.
TMTEO(•TUM) EMTO	PwrFS – Full scale power, in units of 0.1kW
	Pwr% - instantaneous convereter power, as a percentage of the full scale
	value.
Motor: RPM	RPM - Motor speed as measured by the encoder (rpm)
HOCOL. KIN	In the encoder (ipin)
Mtr:Arms Vrms	Arms - Motor current (Arms)
	Vrms - Motor voltage (Vrms)
Mtr: Hz kW	Hz - Motor frequency (Hz)
	kW - Motor power (kW)
Mtr: Id Iq	Id - d-axis motor current vector (A)
-	lq - q-axis motor current vector (A)
Mtr: Vd Vq	Vd - d-axis motor voltage vector (V)
-	Vq - q-axis motor voltage vector (V)
MagErr1 MagErr2	Difference between the magnet position derived from the encoder and the
2 2	result of the Locked Rotor Test (LRT), and the estimated position of the
	magnets based on the back-EMF of the motor.
	MagErr1: Check during motor speed more than 30% of the rated rpm
	MagErr2: Only Monitor during constant speed, no fault check
	Used to detect the following fault: 504 Enc Pos
	See EEPROM parameter: Mag err thr eDeg
	See EEPROM parameter: Rated Motor rpm
Lrt: Ld Lq mH	Motor d-axis and q-axis inductance estimates based upon the LRT result.
	This can be used as a rough estimate for current regulator tuning.
Lrt:L min/max mH	Locked rotor test minimum and maximum inductance estimate as a function
	of rotor perimeter. This can be utilized to asses the quality of the locked rotor
	test.
LR Motor L mH	Motor inductance (proportional gain of current regulators) determined during
	self commissioning locked-rotor tests
LR Motor R Ohm	Motor resistance (integral gain of current regulators) determined during self
	commissioning locked-rotor tests

LR Lsig mH	Motor Transient Inductance $(L_1 - L_m^2/L_2)$ determined during self	
	commissioning locked-rotor tests	
LR Rtc Im s	Rotor time constant (L_2/R_2) determined using the imaginary impedence	
	during self commissioning locked-rotor tests	
LR Rtc Re s	Rotor time constant (L ₂ /R ₂) determined using the real impedence during self	
	commissioning locked-rotor tests	
LR Lphi Im mH	Effective magnetizing inductance (Lm ² /L ₂) determined using the imaginary	
	impedence during self commissioning locked-rotor tests	
LR Lphi Re MH	Effective magnetizing inductance (L _{m²/L₂) determined using the real}	
	impedence during self commissioning locked-rotor tests	
LR Rated Mag I A	Magnetizing current determined during self commissioning locked-rotor tests	
LR Rated Trq I A	Torque current that produces motor rated torque. Determined during self	
	commissioning locked-rotor tests	
LR Rated Trq Nm	Motor torque produced at the rated torque current and rated magnetizing	
	current. Determined during self commissioning tests	
LR Inertia kg-m2	Rotating inertia of elevator system referred to the motor shaft. Determined	
	during self commissioning locked rotor test	
Fine Tune RTC s	Final value of rotor time constant (L_2/R_2) . Determined during self	
	commissioning fine-tuning tests	
Fine Tune Imag A	g A Final value of magnetizing current. Determined during self-commissioni	
	fine-tuning tests	
Fine Tune Lphi H	Final value of effective magnetizing inductance (L _{m²/L₂). Determined during}	
	self commissioning fine-tuning tests	
Fine Tune Itrq A	Final value of motor torque current. Determined during self commissioning	
	fine-tuning tests	
Fine Tune Volt V	Motor voltage at end of constant-speed portion of elevator down run.	
	Parameter determined during self commissioning	
PrF NTSD Tim Lmt	PrF - Drive Profile Status	
	0: Idle or Low speed or Invalid 1: Acceleration	
	2: Deceleration 3: Constant speed	
	NTSD – NTSD mode bit from MCSS	
	Tim - Interval time each NTSD mode (Unit:second)	
	680 sec is set after NTSD with drive limit extension	
	0 is available of drive limit extension for NTSD	
	Lmt - Drive limit current (Arms)	
	If drive receives NTSD mode from MCSS, it displays the NTSD drive	
	limit A rms.	

6.3.5 1-3 MOTION

SVT Display	Description
Vel: Ref Fbk	Ref - Velocity reference dictated by MCSS or the drive's internal profile
	generator
	Fbk - Velocity feedback as measured by the encoder (mm/s).
Pos: Fbk Target	Fbk - Position feedback measured by the encoder (mm).
	Target – Position target (mm).
ToTgt Over T200	ToTgt - Distance to target [mm], positive when overshooting, negative when
	landing short (independent of up/down).
	Over - Max overshoot [mm] beyond target.
	T200 - Time for stopping phase [ms] from vel ref=200mm/s to brake
	dropped.

ESTOP @ mm/s ->	This SVT display shows the velocity (mm/s) and the next 2 displays show
	the slip distance (mm) of the most recent ESTOP. This information can be
	used for evaluating dynamic traction of an elevator. The values are reset by
	POR but not by subsequent runs without ESTOPs.
BrkDelay BrkStop	BrkDelay - mm travelled from last ESTOP to first feedback of brake dropped
	(first BS, I_brake < I_hold)
	BrkStop - mm travelled by sheave from first feedback of brake dropped to
	complete stop
RopeSlip TotSlip	RopeSlip - mm of rope slip after last ESTOP, slipped while sheave moved
	through dropped brake and after sheave stop. This value is valid
	only with valid current floor and after the run following the
	ESTOP is completed, not directly after the ESTOP.
	TotSlip - Magnitude of total mm car motion after last ESTOP,
	TotSlip = BrkDelay + BrkStop + RopeSlip .
	Assumes RopeSlip=0 for invalid RopeSlip.
BLOn Max Min Act	This measures the brake delay time from "Lift Brake ON" to "Picked Brake
	switch". (Requested function for JIS field)
	Max – Maximum Brake delay time after POR
	Min – Minimum Brake delay time after POR
	Act – The measured time at previous run
BLOffMax Min Act	This measures the brake delay time from "Lift Brake OFF" to "Dropped Brake
BIOLIMAX MIII ACC	switch". (Requested function for JIS field)
	Max – Maximum Brake delay time after POR
	Min – Minimum Brake delay time after POR
	Act – The measured time at previous run
BS off Max Act	This measures the delay time of brake drop from "Brake relay off" to
BS OII MAX ACC	"Dropped Brake switch". Especially, this is useful for E-stop condition, with
	reflux diode in the brake control circuit.
	Max – Maximum Brake delay time after POR
	Act – The measured time at previous run
Pos: DTG Start	DTG - Actual distance to go to target (mm)
103. DIG Start	Start - Starting position at beginning of run (mm)
EncPulse RPM	EncPulse – Encoder counts (limited to 065535)
LICCUISE KEM	RPM – Motor RPM
PG: Acc SD	Acc - Acceleration reference from profile generator (mm/sec^2).
IG. ACC 5D	SD - Stopping distance from profile generator (mm).
Lwabs:kg %	kg - The absolute in-car load in Kilograms
Lwabs.kg	 Grading and a solute in-car load in relignments The absolute in-car load in percent of duty load.
	Note: Kilogram value is calculated out of the percent value.
Lwimbal:kg %	kg - The imbalance load weight in Kilograms
Intribut.ry o	 % - The imbalance load weight in Rilograms % - The imbalance load in percent of duty load.
	Note: Kilogram value is calculated out of the percent value.
LW: Fbk % Adj %	Fbk: - Displays the load weighing feedback from the discrete load weighing
TW. TOK 0 AU 0	device
	Adj: - Displays the actual load weighing used for pretorquing prior to the run.
Unbalance % kg	This is to check the unbalanced torque when the overbalance is adjusted.
SIDULATICE & KY	This data is updated when the elevator is normal stop at floor, not
	emergency stop.
	% - Duty load % for unbalance
	kg – unbalanced kg
	Duty load kg is defined with "Duty Load kg".
	Please refer the "6.9.5 How to check the balanced load? (For PM
	machine)".

BeltCmp:Iq A	This is the additional current (A) that is added to the pretorque value to compensate for belt and traveling cable imbalance. This value is updated at the beginning of each run and depends upon the car position in the hoistway. It is calculated using two compensation parameters that are
BeltCmp:Slp mA/m	determined during the learn run (the next two parameters). This parameter is the variation of torque current per meter of hoistway due to belt and traveling cable imbalance. This value is determined during the learn run. If the learned value is out of range, the following fault is logged: 518
	$\tt BeltCmp$. The learned value can be overridden using the parameter: $\tt BeltCmpSlp mA/m$
BeltCmp:Offset A	This parameter is half of the difference of the torque current during the constant speed portion of the run near the bottom and near the top of the hoistway. This value is determined during the learn run. If the learned value is out of range, the following fault is logged: 518 BeltCmp. The learned
	value can be overridden using: Belt Cmp Off A
Rllbck: mm Num	mm - Amount of rollback in millimeters Num - The number of rollbacks in the last 40 runs.
RbTrgt: mm Num	mm - Amount of overshoot in millimetersNum - The number of overshoots in the last 40 runs.
Vel Entering DZ	This parameter is used to support the TUV handover tests in which it is demonstrated that the car speed does not exceed a certain value when entering the door zone. This parameter displays the velocity in mm/sec when the car enters each door zone. The value is reset at the beginning of each
Braking Dist mm	run. See Section 6.9.2 for more details regarding Turnover Tests. This parameter is used to support the TUV handover tests in which the
	braking distance of one brake shoe is tested. This parameter displays the estimated linear distance in mm due to sheave rotation from the moment either of the brake switches indicates a brake has dropped to the moment
	when the sheave velocity is less than the stopping criteria, 5 mm/sec. The parameter is always calculated regardless of operating mode and is reset at the beginning of each run. See Section 6.9.2 for more details regarding Turnover Tests.
HitchLw: Empty:	HitchLw: The value received from the hitch load weighing device. The unit is kg. During a run the last value received during the last stop is
	displayed. If no value is received, a 0 is displayed. Empty: The value expected from the hitch load weighing device for empty
	car.This value depends on the hoistway position and on the hitch load weighing calibration. The calibration is done during a learn run. It can be checked or modified by the engineering adjust parameters.
HitchLwSensor:	The 8 sensor inputs of the Hitch Load Weighing device can be individually checked. The sum of these 8 values must be the "HitchLw" value above.
	Every sensor value is displayed sequentially for 2 seconds. The first number is the sensor number (07), the second one is the value in [kg].
	Note: In some case two sensors can be wired in parallel to one hardware input.
PT LdT Iref Ld%	PT (A) – Pre-Torque data of Inverter current
	Ldt (A) – Pre-Torque data with Load Weighting data
	Iref (A) – Inverter Iq reference Ld% - Load Weighting data %
Data Thr Num LWS	Data – The sensor inputs of the Hitch Load Weighing device
	Thr – The threshold of "728 Slack Rope" for each Load sensor
	Num – The sensor number for each 8 sensor LWS – Number of LW sensor set by F32 "Num LwSensorData"

LSC LDZ 1LS 2LS	LSC – Counts of DZ in LS
	LDZ - 1 = Detected DZ in LS, 0 = Out of DZ or LS
	1LS – Number of DZ in 1LS, 0 = Outside of 1LS
	2LS – Number of DZ in 2LS, 0 = Outside of 2LS
	Note: This monitor is valid only for TCI in LS.
	Also this is visible only for;
	"Drive Type " = 412 or 416 or 428 or 460
	And "JIS Option Mode " = 80

6.3.6 1-4 INVERTER

SVT Display	Description		
Inp:Vrms Vdc	Vrms - Measured AC main input voltage (Vrms)		
	Vdc - Measured DC bus voltage (V)		
Ac/Dc cal fctr %	This parameter indicates the degree of consistency between the voltage		
	measurements from the dc bus and the ac line sensors for a prolonged drive		
	idle time the dc bus is charged. 100% means mathematically that $\sqrt{2}$ *		
	(Inp:Vrms) = Vdc (Inp:Vrms Vdc). Note that 100% does not mean that		
	they individually consistant with a truly calibrated voltage measurement		
	device.		
	This parameter is not visible if low voltage operation (Low Volt Op 0/1)		
	is turned off.		
Cnv:Vrms Arms	Cnv: - Converter voltage command (Vrms)		
	Arms - measured AC main input current (Arms)		
Cnv: Id Iq	Id - Measured d-axis converter current vector (A)		
1	Iq - Measured q-axis converter current vector (A)		
Temp:Cnv Inv	Inv - Measured Inverter IGBT or heatsink temperature (C)		
	Cnv - Measured Converter IGBT or heatsink temperature (C)		
Temp:Cnv Inv	Inv - Measured Inverter IGBT or heatsink temperature (C) for OVF416G		
Fan Duty %	Fan - PWM duty command for the fan (%).		
BW(Hz):Cnv Inv	Cnv – Target bandwidth of converter current regulator (hertz)		
	Inv – Target bandwidth of inverter current regulator (hertz).		
	These numbers are used for tuning the current regulators.		
Cnv Reg Freq(Hz)	Converter Regulator Frequency		
Inv Reg Freq(Hz)	Inverter Regulator Frequency		
Brake Current A When the internal brake module is used, this is the current to the brake			
	measured in (A). Active only when setup parameter Int Brk Type 0-4 is		
	set to 1.		
Battery Volts V	Voltage of the battery during ARO(EN) operation.		
Brake Volt PWM %	Brake voltage PWM command in %		
BkCur:Ref Fbk	Ref - Brake crrent command (A)		
	Fbk - measured brake input current. (A)		
Brk kp ki	Proportional and integral gains of brake current regulator.		
Brk Vdc V Duty%	Vdc - Measured brake DC bus voltage (V)		
	Duty% – PWM duty command for the Brake (%).		

6.3.7 1-5 DISCRET	ETES			
SVT Display	Description			
PTR RTR LB BL	PTR - prepare to run command from MCSS			
	RTR - ready to run status from drive			
	LB - lift brake command from MCSS			
	BL - brake lifted status from drive			
DL DF SAS	DL - drive torque limit has been reached			
	DF - drive fault has been detected			
	SAS - drive stop and shutdown has occurred			
BS1 BS2 BY BST	BS1 - brake switch 1 (see parameter: Brk Sw Type 0-6)			
	BS2 - brake switch 2 (see parameter: Brk Sw Type 0-6)			
	BY* - BY relay feedback (0-dropped/1-picked)			
	BST* - brake status feedback (0-dropped/1-picked)			
	*not visible when internal brake control active.			
	See parameter Int Brk Type 0-4.			
SX DBD SNO SAF	SX - command to pick S1 and S2 relays (0-drop/1-pick) DBD - active if normally-closed contacts of S1, S2			
	 DBD - active if normally-closed contacts of S1, S2 BY1 and BY2 relays are closed 			
	SNO - normally-open contact of S1relay (0-dropped/1-picked)			
	SAF - safety chain input to drive (0-inactive/1-active)			
MAN MUP MDN	MAN - manual mode input to drive (0-inactive/1-active)			
	MUP - manual mode up command to drive (0-inactive/1-active)			
	MDN - manual mode down command (0-inactive/1-active)			
MX PX DX BX	MX - command to pick main contactor (0-drop/1-pick)			
	PX - command to pick precharge relay (0-drop/1-pick)			
	DX - command to pick discharge relay (0-drop/1-pick)			
	BX - drive command to pick brake relay (0-drop/1-pick)			
UP DN RG DS	UP - car moving up			
	DN - car moving down			
	RG - motor is regenerating (0=motoring/1-regenerating)			
	DS - PWM frequency is downshifted to half the nominal frequency.			
UIS LV1 LV2 DIS	UIS - Relevel UP sensor			
	LV1 - Door zone 1 sensor			
	LV2 - Door zone 2 sensor			
	DIS - Relevel DOWN sensor			
FLR NCF CTF ATF	FLR - Current Floor			
	NCF - Next Committable Floor			
	CTF - Target Floor			
110 010 010 010	ATF - Accepted Target Floor			
1LS 2LS UIB DIB	1LS - Bottom Terminal Zone			
	2LS - Top Terminal Zone UIB - Up Inspection Button			
	DIB - Down Inspection Button			
RSW PFL UPS DBR	RSW - Line reactor thermal switch is open			
RSW III OIS DER	PFL - Drive power supply is indicating imminent power failure.			
	UPS* - UPS prohibits energy recovering: Smart DBR required			
	DBR* - Overheat switch of external Smart DBR unit			
	*only visible for Interface Type = 1 and DBR Mode 0-3 > 0			
DS DS1 DS2 FLR	DS - State of DS Sensor input			
	DS1 – State of DS1			
	DS2 – State of DS2			
	FLR - Current floor			
	See "TwoStepSpeed 0/1" for more information.			

SHK BAT EAR SUS	SHK - Start / Stop shock detection BAT - Battery mode (B_MODE)			
	EAR - Automatic Recovery mode for Earthquake operation			
	SUS - Suspend Failed Drive. This is required for future option with			
	Tandem drive operation, like Skyway drives.			
RLM RLD BTT BTC	RLM - Relevel mode from MCSS			
	RLD - Relevel mode in DriveState			
	BTT - Toqrue mode of "Brake Maintenance Test"			
	BTC - Brake Torque test Clear flag to next run			
MOC BOD CZO FAN	MOC - temperature input (0-inactive / 1-active)			
	BOD - Battery Operation mode (0-nomal / 1-Battery mode)			
	CZO - CZ_NO input (0- inactive / 1-active)			
	FAN - command to pick fan relay (0-drop / 1-pick)			
UDX ETS SSB OEN	UDX - command to UDX relay (0-drop/1-pick)			
	ETS - command to ETSC (0-drop/1-pick)			
	SSB - command to SSB (0-drop/1-pick)			
	OEN - command to PWM output eneble (0-drop/1-pick)			
SSX SMG SR1 EMG	SSX - Send "S1,S2 Relay check" to MCSS			
	SMG - Sends "Magnet Position Known" to MCSS			
	SR1 - SR1 input 0-inactive / 1-active(picked)			
	EMG - Magnet position error flag with MagErr2 (Refer to F12 MagErr1			
	MagErr2)			
AR1/2 CrF CrS	R1/2: The status of AR1 and AR2 contacts where 1 means that ARO			
	initiated via energized the contacts			
	CrF: Charger fault where 1 means faulty charger, flashing means			
	temperature out of range or sensor not connected			
	CrS: Charger Status where 1 means fast charging and flashing bit indicating pre-charge qualification.			
SLV RCF LV1 LV2	SLV – DriveSafeToRelevel from GECB (1: Relevel Enabled)-			
	RCF – DriveSpeedCheck to GECB (1: Relevel Enabled)			
	LV1 Door zone 1 sensor			
	LV2 Door zone 2 sensor			
FLR Mid EQAR-R/S	FLR – Current Floor			
	Mid – Middle floor information of hoistway			
	EQAR-R – EQAR Request command from OCSS			
	EQAR-S – EQAR mode Status of Drive			
RST RSC SPM	RST – DSP Reset command from MCSS			
	RSC –Waiting state during 3 seconds with MCSS Reset Command			
	(0-No reset command, 1- DSP reset after 3 seconds)			
	SPM – Single Phase command from MCSS (0-3 phase, 1-single phase)			

6.3.8 1-6 METRICS

Note: parameters that track since time of installation can be reset by pressing SHIFT-ENTER on the service tool when the parameter is displayed.

SVT Display	Description	
ALWA DISPLAY	ALWA = Automatic Load Weigh Adjustment	
	This display has two alternating displays described below.	
	Note: This feature is currently not supported in this release and is	
	available for Engineering test purposes only.	
	available for Engineering test purposes only.	
	Display 1	
	1 st line :	
	Load in car in percent	
	Postload weight at the end of run in percent	
	ALWA Gain in percent	
	2 nd line:	
	ALWA Offset in percent	
	ALWA Error in percent	
	Display 2	
	1 st line:	
	"Rbk" – Rollback/rollforward at the beginning of the run in mm.	
	"Cnv" - ALWA Converged (1) or diverged (0).	
	2 nd Line:	
	ALWA STATE	
	Displays the current state of ALWA which is one of the following	
	-ALWA CONVERGED	
	-ALWA DIVERGED	
	-ALWA ERROR	
	-ALWA RESET	
Flight Time	Flight time of last run (sec).	
right rinc	Format: DAYS:HOURS:MIN:SEC:10MSEC.	
Flight Length mm	Flight length of last run (mm).	
Number of Runs	Accumulated number of runs since installation.	
Runs Since Event	Number of runs since the last event was logged.	
Max AC Main Vrms	Maximum AC mains (Vrms) while PLL locked since installation.	
	If PLL not locked maximum not detected.	
Max Temp C	Maximum temperature (C) since installation.	
Max DC Bus V	Maximum DC Bus voltage (V) since installation.	
Max Motor Arms		
	Maximum motor current (Arms) since installation.	
	Maximum converter current (Arms) since installation.	
Cap Time In Use	Accumulated time the DC Bus has been charged since installation.	
Fon Time To Use	Format: DAYS:HOURS:MIN.	
Fan Time In Use	Accumulated time the fan has been running since installation.	
	Format: DAYS:HOURS:MIN.	
Tot. Time In Use	Accumulated time the drive has been powered since installation.	
	Format: DAYS:HOURS:MIN.	
Metric E2 Writes	Accumulated number of times metrics have been written to the EEPROM	
	since installation. Metrics written if power fail signal from supply active.	
Event E2 Writes	Accumulated number of times events have been written to the EEPROM	
	since installation.	

Position @pwroff	Position (mm) saved to EEPROM during last power down. This is saved as	
roororon cpurorr	zero if power down occurs during motion, defined as time between brake lift	
	command and brake dropped with velocity < 10mm/sec.	
	Invalid: 0	
	Valid: 10000.0 to 510000.0	
OMU Prohibited	Indicates that the previous run was TCI. Consequently, if the drive is	
	powered-up with an OMU, the OMU software download functions will be	
	prohibited. The "008 OMU Prohibit" fault will be logged.	
LW % @pwroff	Load value in % imbalance measured at start of last run.	
Max Enc Cnt	This is the maximum number of iterations that was required to read the	
	encoder with stable signals. If this value is greater than 3, this indicates that	
	there is probably noise on the encoder signals and may indicate an issue	
	with the encoder wiring or grounding.	
DDP sec	Required for Korean Market.	
	Displays the current value of SVT parameter DDP sec.	
ARD DDP sec	Required for Korean Market.	
	Displays the current value of SVT parameter ARD DDP sec.	

6.3.9 1-7 VANES

SVT Display	Description			
SlipMax mm ldg h XXX.X LYYY ZZZ.Z	 XXX.X - Maximum slip distance detected [mm]. This value reflects slip after the tolerances for potential other errors have been subtracted! If the measurement never exceeded the level of potential other errors and tolerances, the value shows "". YYY - Landing number where slip XXX was detected. 			
	ZZZ.Z - Rest period in the landing [h] after which slip XXX was detected.			
SlipRateMax mm/h XX.XX LYYY ZZZ.Z	XX.XX - Maximum slip rate detected [mm/h]. This value reflects slip after the tolerances for potential other errors have been subtracted! If the measurement never exceeded the level of potential other errors and tolerances, the value shows "".			
	 YYY - Landing number where slip rate XX.XX was detected. ZZZ .Z - Rest period in the landing [h] after which slip rate XX.XX was detected. 			
Slip Mitigation XXX YYYYYYYYYY	 XXX - Configuration status of belt static slip mitigation feature: ACT: Active LOG: Log only (no reaction triggered by drive) 			
	RST: Reset YY - Reaction triggered: ok: No reaction (no excessive slip) PHRZZZZZmin: Phantom runs triggered at interval ZZZZZ min BLOCKAGE: Elevator blockage (->GECB) in top landing			
RestTime now max XXXXX YYYYY min	 XXX - Time [min] that elevator has rested in the current landing. YYY - Max time [min] that elevator has rested in a landing between NORMAL runs since last feature reset or power up. 			
PrsSpikesFilterd	Number of occurrences where a PRS signal state (=UIS/LV1/LV2/DIS combination) was stable for less than 4 samples and was therefore filtered out from the sequence of valid PRS states. These "spikes" can be due to bouncing, EMI or can regularly occur where the PRS overlaps 2 vanes at the same time (short landings). "PrsSpikesFilterd" is initialized to 1 and is reset at POR.			
last SpikeLength	Length of last PRS signal state counted in "PrsSpikesFilterd", in samples (13, sampling rate 1ms).			

lastDanistics	Detected transition and a superstal transition and [0 dense] we detect for every			
lastDeviation	Detected transition pos – expected transition pos [0.1mm], updated for every transition			
lastCorr @mm/s2	lastCorrr – Last correction made to pos.fbk, in [0.1mm], updated only when			
	correction is made (at faster speeds: after last transition of vane,			
	summarizing all deviations)			
	@mm/s2 – Acceleration (encoder) measured at last correction.			
avgDevInRun	Average of all deviations in ongoing or completed run, in [0.1mm].			
avgCorrInRun	Average of all corrections to pos.fbk in ongoing or completed run, in [0.1mm].			
maxDevInRun @ldg	Deviation of greatest magnitude in ongoing or completed run, in [0.1mm],			
	together with landing number where it occurred.			
maxCorInRun @ldg	Correction (pos.fbk) of greatest magnitude in ongoing or completed run, in			
Offect UTC 0 1mm	[0.1mm], together with landing number where it occurred.			
Offset UIS 0.1mm	Transitions of the UIS sensor at both the upper and lower edges of the vanes			
	had been on average higher than expected from the nominal sensor head			
Offset 1LV 0.1mm	geometry Transitions of the 1LV sensor at both the upper and lower edges of the vanes			
OIISEC INV O.IMM	had been on average higher than expected from the nominal sensor head			
	geometry			
Offset 2LV 0.1mm				
	had been on average higher than expected from the nominal sensor head			
	geometry			
Offset DIS 0.1mm	Transitions of the DIS sensor at both the upper and lower edges of the vanes			
	had been on average higher than expected from the nominal sensor head			
	geometry			
LS1 length mm	Learned length of LS1 magnet during learn run.			
LS2 length mm	Learned length of LS2 magnet during learn run.			
LS length min mm	Drive calculated minimum LS length-depends on profile parameters.			
AHC fault count	Active only when "AHC Enable 0/1"= 1			
	The number of faults related to advanced hovering control (AHC) with			
	respect to the top of car encoder signal sent to the machine room drive.			
AHC Permissive	Active only when "AHC Enable 0/1"= 1			
	0 – Advanced Hovering Control is not active during a hovering/releveling run			
	1 – Advanced Hovering Control is active during a hovering/releveling run			
AHC Pos Delta mm	Active only when "AHC Enable 0/1"= 1			
	The difference between the machine encoder and the car encoder if the AHC			
	top of car encoder system is present			
AHC: Car Mach	Dual Display with Car encoder velocity and Machine encoder velocity			
	Car- Car encoder velocity with magnitude and sign.			
AHC: Kd used	Mach- Machin encoder velocity with Magnatude and sign. Active only when "AHC Enable 0/1"= 1			
Anc: nu used	This is the effective derivative gain (Kd) that is used during Advanced			
	Hovering Control (AHC). The effective Kd = Kd gain * (Kd red factor) *			
	(hoistway position). If the Kd red factor is 0, then the effective Kd is simply			
	equal to the Kd gain SVT parameter. Please see "AHC Kd RedFactor" and			
	"AHC Kd gain".			
L				

6.3.10 1-8 ENGINEE	ERING		
SVT Display	Description		
Test Variable 1	Test variable used be engineering.		
Test Variable 2	Test variable used be engineering.		
Test Variable 3	Test variable used be engineering.		
Test Variable 4	Test variable used be engineering.		
Test Variable 5	Test variable used be engineering.		
Test Variable 6	Test variable used be engineering.		
CPU:Max% Avg%	Max% - maximum CPU utilization.		
	Avg% - average CPU utilization.		
Tsk 1ms% 10ms%	Tsk 1ms% - Percent utilization of the 1ms task.		
	Tsk 10ms% - Percent utilization of the 10ms task.		
Cnv% Inv% All%	Cnv% - Percent utilization of the converter task (50 usec max).		
	Inv% - Percent utilization of the inverter and the converter task (100 usec		
	max).		
	All% - Perecent utilization of all high-speed tasks (inverter, converter, and		
	other) and the task schedule (200 usec max).		
E2 Load Time ms	The amount of time it takes to load all the EEPROM paramaters to RAM.		
Stack Used Max%	Percent of software stack used.		
Vel Scale mm/s	Numerical scaling of the velocity in the software.		
Drv I Scl Rated	Drive current scaling		
MagPos /LRT eDeg	MagPos – See above.		
	LRT eDeg - Angular offset of the magnets with respect to the encoder in		
	electrical degrees		
ADC:gain% offset	ADC gain% - ADC gain factor, in percent. It is nominally 100%, and is		
-	allowed to vary between 90.4% and 109.6%.		
	ADC offset - ADC offset factor, in counts It is nominally 0, and is allowed to		
	vary between –139 and +139 counts, which is 3.4% of full		
	scale ADC counts.		
	Used to detect the following fault: 707 ADC Offset		
Reactor I Arms	This is the filtered, average current in the converter and line reactor. The		
	time constant of the filter is 10 minutes for iron-core coils and 0.6 minutes for		
	air-core coils, which is the approximate time constant of the line reactor's		
	thermal response. It is used to determine when the fan should be fully		
	turned-on to cool the line reactor. The threshold for the fan is 90% of the line		
	reactor continuous rated current.		
Inert used kg-m2	This display variable is the actual inertia used when the load in the car		
	changes. This is valid when the load weighing type is 1 (Load Weigh		
	T_{ype}) and there is valid load weighing information. The inertia used can not		
	be more than +/-20% of the contract inertia Inertia kg-m2		
mm @accumEncPls	Shows the mm position corresponding to the accumulated encoder pulse		
	count. This display/count can be reset to zero (SHIFT-ENTER) anywhere		
	and shows sheave position relative to the reset point, i.e. without including		
	pos fbk correction steps.		
Vel Reg Hz	The actual rate of the velocity regulator task in Hz.		
Cnv Reg Hz	The actual rate of the converter regulator task in Hz.		
VTE Parameters	Current status of Vane Transition Estimator (VTE) parameters identified by		
AAA BBB CCC DDD%	adaptive algorithm: For vane exit <5min after entry, Normal runs only.		
	AAA - [0.1mm] Hysteresis (nominal to actual, not on to off)		
	BBB - [0.1mm/m] Rope stretch for car load change 100%DL		
	CCC - [0.1mm] Hitch spring compression for car load change 100%DL		
	DDD - [%] ratio EmptyCarWeight/DutyLoad		

VTE Dtbc:est mea	XXX - Last estimated disturbance: estimated vane exit pos vs. nominal.			
XXX.X YYY.Ymm	YYY - Last measured disturbance: detected vane exit pos vs. nominal.			
VTE Dbc:HyAcLgLd	Last estimated disturbance components: estimated - nominal			
AAA BBB CCC DDDD	AAA - [0.1mm] Hysteresis (nominal to actual, not on to off)			
	BBB - [0.1mm] Accel effects (stretch+hitch)			
	CCC - [0.1mm] Lag effect			
	DDD - [0.1mm] Load change effect (stretch+hitch)			
VTE MaxDevFrmNom	M - Maturity level of Vane Transition Estimator (VTE) corresponding to			
M: XXX.X YYY.Ymm	XXX, YYY			
	XXX - Max deviation (nominal exit - measured exit mm-position).			
	YYY - Residual error of VTE corresponding to XXX			
	(estimated exit - measured exit mm-position).			
VTE MaxResidl SE	 M - Current maturity level of Vane Transition Estimator (VTE), 			
M: XXX.X YYY.Ymm	corresponding to max residual errors XXX, YYY			
	XXX - Max residual error of VTE in UP direction at same edge			
	(estimated exit > measured exit mm-position).			
	YYY - Max residual error of VTE in DOWN direction at same edge			
	(estimated exit < measured exit mm-position).			
VTE MaxResidl OE	M - Current maturity level of Vane Transition Estimator (VTE),			
M: XXX.X YYY.Ymm	corresponding to max residual errors XXX, YYY			
	XXX - Max residual error of VTE in UP direction at opposite edge			
	(estimated exit > measured exit mm-position).			
	YYY - Max residual error of VTE in DOWN direction at opposite edge			
	(estimated exit < measured exit mm-position).			
BSLP 3Margin mm	Remaining margin before triggering belt slip phantom runs:			
AAA BBB CCC DDDD	Overall_Margin-abs(expected-measured)			
	Positive values indicate no slip, negative are detected as slip.			
	AAA - [mm] Remaining margin at largest deviation			
	abs(expected-measured exit pos).			
	BBB - [mm] (Next) smallest remaining margin.			
	CCC - [mm] Remaining margin at (next) highest slip rate.			
	DDD - [mm] Overall_Margin at AAA			

6.4 Event Log

6.4.1 General Description

All events detected by the drive software, except for those that are masked out via parameters "MaskOut Warning1" and "MaskOut Warning2", are stored in an event log that is accessible through the service tool. There are two event logs: the *current* log contains information about events which have been detected since the most recent POR, and the *saved* log which is the EEPROM backup of the events from before the most recent POR.

- If "MaskOut Warning1" is non-zero, the event log displays "Filter is on!" as its first entry to indicate that some events are masked out of the event log.
- Both the *current* log and the *saved* log have the same format. Each entry in the log contains the event code, the name of the event, and the elapsed time since POR that the event was detected:

705	E2	Invalid
0000	0:00	0:00:00.04

The time is in the format: DDDD:HH:MM:SS.SS.

- Enter **menu 2-1** to access the *current* log, events that have occurred since the most recent POR.
- Enter menu 2-2 to access the saved log, events that occurred before the most recent POR.
- Enter menu 2-3 to clear the *current* event log.

Clear	Log?		
Enter	to	clear.	

Hit SHIFT-ENTER to clear.

• Enter **menu 2-4** to clear a blockage of the drive that occurs when certain events are detected.

6.4.2 Event-Specific Data

When viewing an event, event-specific data can be accessed by using the following service tool keys:

Key	Description	Example: Before	Example: After
Sequence		Key Sequence	Key Sequence
SHIFT-	Navigates <i>down</i> one level in the event tree to access event-specific data.	Power On	Drive State @Evt
ENTER		0000:00:00:00.04	IDLE
	If the fault is: 705 E2 Invalid	705 E2 Invalid 0000:00:00:00.04	Go to XX Invalid Param
GO ON	Scrolls forward through event-	Drive State @Evt	Number of Runs
	specific data.	IDLE	12
GO ON	Scrolls forward through event-	Number of Runs	Event Response
	specific data.	12	Emergency Stop
SHIFT–	Scrolls in <i>reverse</i> through event-	Event Response	Number of Runs
GO BACK	specific data.	Emergency Stop	12
CLEAR	Navigates <i>up</i> one level in the event tree.	Number of Runs 12	Power On 0000:00:00:00.04

Event-specific data that is available is shown in the table:

Service Tool Display	Description	
Drive State @Evt IDLE	This shows the state of the drive when the event was logged. Note that this is the state when the event is logged rather than the state when the event is detected.	
Number of Runs 12	This counter is incremented if the last run had no events logged other than "001 New Run".	
Event Response Emergency Stop	The response of the drive when the event was detected.	
Event Count: 12	 The number of times the fault was logged since the event log was cleared. The counter is incremented each time the fault is logged. Note, the counter is incremented (and event logged) only once in a run even if the event is detected multiple times during this run. Also, the counter is incremented at event detection event if that event is masked out of the event log via parameters "MaskOut Warning1" or "MaskOut Warning2". 1. This count is different from the occurrence count that is used to block the drive. See section 6.4.3 for a description of the occurrence counters that cause blocking. 2. The event counters and logs are cleared via M26. 3. The event count is not cleared at POR. 	

The following information is available under Interface type:

1 – CAN Interface, TCBC or GCS, profile generator in drive:

Service Tool Display	Description
Drive State @Evt IDLE	This shows the state of the drive when the event was logged. Note that this is the state when the event is logged rather than the state when the event is detected.
Number of Runs 12	This counter is incremented if the last run had no events logged other than "001 New Run".
Event Response Emergency Stop	The response of the drive when the event was detected.
Event Count: 12	 The number of times the fault was logged since the event log was cleared. The counter is incremented each time the fault is logged. Note, the counter is incremented (and event logged) only once in a run even if the event is detected multiple times during this run. 1. This count is different from the occurrence count that is used to block the drive. See section 6.4.3 for a description of the occurrence counters that cause blocking. 2. The event counters and logs are cleared via M26. 3. The event count is not cleared at POR.
Drive Sub State 12	This shows the sub state of the drive when the event was logged. Refer to section 7 for substate value and definition
velocity mm/s O	This shows the velocity at which the motor was running while the event was logged
Position 0.1mm 0	This shows the position of the car in 0.1mm resolution when the fault was logged
CanRun Mode NO_RUN	This shows the CAN run mode in which the fault was logged
Current Floor 255	This shows the current floor position when the fault was logged

6.4.3 Shut Down Error Handling

Some error events cause a shut-down (immediate stop) with an additional inverter blockage immediately or after repeated occurrences in sequence. In case of an inverter blockage, the DC – link will be disconnected from the mains supply.

WARNING! Before starting the drive again, the error reason must be found and solved. Otherwise, the inverter can be seriously damaged.

In case of blockage, do the following:

- 1. Establish service tool connection to the drive.
- 2. Find out the reason that caused the blockage by viewing the event log **menu 2-1**.
- 3. Clear the blockage by going to **menu 2-4** and following the prompt:

Clear	Block?	
Enter	to	clear.

Hit SHIFT-ENTER to clear.

• Some errors cause blockage only as long as the failure is still present, e.g., if an over heat occurs then the drive is allowed to do runs again as soon as the drive has cooled down. See the event descriptions in Section 6.4.8 for further details.

6.4.4 Occurrence Counters

As stated above, some errors have an internal counter that is incremented every time that error occurs in succession. When the counter has reached a limit, the drive will block itself. The specific errors that have such counters and the corresponding limits are indicated in the detailed event descriptions in Section 6.4.8. For example, "E4" means that 4 occurrences in series lead to a drive blockage.

Applicability

- The counters are applicable only when the drive is in CAN mode (Interface Type = 1). They are *not* applicable when the drive is in MCSS mode.
- The counters are *not* applicable during TCI and ERO runs; all the counters are reset to zero when the car is set to TCI or ERO.

Clearing of Occurrence Counters

The occurrence counters are cleared automatically after several consecutive runs without error. The detail action taken is:

 Two successful runs without error are required before any counters are decremented. After two successful runs, *all* the counters are decremented by one for each successful run. The only exceptions to this are for the events "512 Missing Vane" and "513 No PRS Trans". For these two events, *five* successful runs without error are required before these counters are decremented (this is so because these faults result in correction runs, but these faults are not checked during correction runs).

The occurrence counters are manually cleared by any of the following actions:

- The car is placed on TCI or ERO.
- Clear Blockage, menu 2-4
- Software reset, menu 2-5.
- o POR

6.4.5 Software Reset

The DSP on the control board can be reset through service tool commands. This is intended to be used when performing software upgrades to the control board.

The reset is accessed in menu 2-5. A confirmation is required:

Reset	DSP?	
Enter	to	reset.

Hit SHIFT-ENTER to reset.

Note, the reset is only allowed when the drive is in the IDLE state or less.

6.4.6 Event Response

Every event detected by the drive has a defined response, which is summarized in Table below.

Event Response	Abbrev -iation	Description				
INFO	I	The event is logged for information only and no action is taken by the drive.				
WARN	w	The event is logged for warning only and limited or no action is taken by the drive.				
СОМР	с	 The event is logged, the run is allowed to complete, and the drive enters the ShutDown state. The drive sets the Stop-an-Shutdown (SAS) flag until the fa condition clears. In CAN mode, the drive will NOT attempt another run until the fault condit clears. In MCSS mode, the drive will attempt another run if requested by the controller, except for thermal faults. 				
NEXT- COMMITT ABLE	NC	 This response is applicable only for CAN-type controllers during normal runs. The event is logged and the target is changed to the next committable. PRS+LS signals are ignored for position corrections. The drive sets the stop and shutdown (SAS) flag until the fault condition clears. The run to the next committable will continue only if the fault is determined to be triggered by a failure of the GECB, a failure "both LS active" or a failure of the CAN communications. This is determined by checking if a follow-up event event "511 1LS & 2LS !" was also logged or the CAN message "DrHwySignals" has timed out (=event "906 No LS Msg"). Otherwise, the fault response will transition to a timed decel (DECEL). When the run ends, the drive passes through SHUTDOWN and position is invalidated. During other run modes than NORMAL, the fault reaction is an immediate timed deceleration (DECEL). 				
DECEL	D	 This response is applicable only for CAN-type controllers. The event is logged, the run is terminated with a timed decel, and the drive enters the ShutDown state. The deceleration rate is 105% of contract deceleration rate with a minimum of 0.5 m/sec^2. The drive remains in the ShutDown state until the fault condition clears. The drive will NOT attempt another run until the fault condition clears. For momentary faults, the fault is automatically cleared after the sheave has stopped, subject to a minimum 250 ms. 				
ESTOP	E	 The event is logged and the run is immediately terminated by the drive. In CAN mode, The drive enters the ShutDown state for certain faults. It remains in this state until the fault clears, the sheave has stopped, and a minimum of 100ms. Some faults will set the Stop-an-Shutdown (SAS) flag. The drive will NOT attempt another run until the fault condition clears. In MCSS mode, the drive will attempt another run if requested by the controller. When the estop was caused by a command to stop or by the safety chain opening, the drive enters Wait for Safety state. In either case, if the fault was not a converter-related fault, the converter will remain active until the sheave has stopped. 				

SERVICE	S	The event is logged, the run is immediately terminated by the drive, and the drive enters the Power Down state. The drive sets the Stop-an-Shutdown (SAS) flag. The drive is blocked from further runs. A power on reset (POR) is required for the drive to recover from this condition or must be reset through the service tool menu 2-4.			
		This response is applicable only for CAN-type controllers.			
ENDRUN	ER	The event is logged, the run or brake lift is aborted using a normal deceleration			
		profile (jerk-in/out), and the drive does not enter the ShutDown state.			
		This response is applicable only for CAN-type controllers.			
		The event is logged, the run or brake lift is aborted using a normal deceleration			
	ERS	profile (jerk-in/out), and the drive enters the ShutDown state.			
ENDRUN + SHD		• The drive remains in the ShutDown state until the fault condition clears. The			
300		drive will NOT attempt another run until the fault condition clears.			
		• For momentary faults, the fault is automatically cleared after the sheave has			
		stopped and a minimum of 250 ms time.			

Sheet 75 of 213

6.4.7 Event Overview

Information Events	055 RTCr negativ	123 CnvOverload	403 Brake BY
000 Power On	056 RTCr not cnv	Converter Current	404 Brake I Off
001 New Run	057 SWEEP negatv	Faults	405 Brake I Drop
002 SPARE	058 RTC negative	200 Cnv SW Oct	406 Brake I Hold
003 Stack Warn	059 RTC is zero	201 Cnv Id Error	407 Brake I Max
004 Power Down	060 RTC negative	202 Cnv Iq Error	408 Brk S1 ESTOP
005 Extern FLASH	061 RTC not conv	203 Cnv Ix Offst	409 Brk S2 ESTOP
006 Extern RAM	062 ID&V diverge	204 Cnv Iy Offst	410 Low Speed
007 OMU Present	063 NO Op Point	205 Cnv Gate Flt	411 Brk S1 DECEL
008 OMU Prohibit	064 Imag>drv Rtd	206 Cnv HW Oct	412 Brk S2 DECEL
009 Manual Mode	065 Wrong direct	207 Cnv Gnd Flt	413 Bk Desat Err
010 B_MODE	066 PTR Timeout	208 Bus Cap Fail	414 Bk Bus Over
011 Battery Mode	067 Car nt empty	209 DC Link OCT	415 Bk Bus Under
012 LearnRun REQ	068 FT RTC !conv	210 Cnv IPM Flt	416 Bk fbk tmout
013 Reset DSP	069 FT not conv	211 Battry Chrgd	417 Bk SW Oct
014 Clear Log	070 FT ID ! conv	212 Cnv Vmag Flt	418 Bk lft tmout
015 AutoTun Mode	071 FT Itq !comp	213 Cnv I Imbal	419 Bk drp tmout
016 Earthquake	072 Ineria !conv	214 Cnv DeSat	420 Bk Dly DetW
017 Block Cleard	073 Run too shrt	Voltage Faults	421 Bk Dly DecE
018 ALWA CONVRGD	074 Drive Fault	300 DC Bus Over	422 Brk ShrtCrkt
019 ALWA ERROR	075 Drive SAS	301 DC Bus Under	423 Brk I State
020 ALWA RESET	076 ID/IQ divrge	302 VAC Over	424 Brake I Neg
021 ALWA DIVERGD	077 RTCr Real<0	303 VAC Under	425 Hyd Pump Flt
022 EQAR Clear	079 Kp RTR Fault	304 VAC Imbal	426 BTI NG LOCK
023 ARO Hlth Chk	080 LearnRun SVT	305 PLL Unlock	427 Chk Man BTI
024 ARO Active	Inverter Current	306 Single Phase	428 Brk S3 DECEL
025 ARU Type Mis	Faults	307 PLL Freq Rng	429 Brk S4 DECEL
026 UCM-EN clear	100 Inv SW Oct	308 Welded Mx/Px	430 Brk S5 DECEL
027 Temp is 0	101 Inv I Imbal	309 Vscales off	431 Brk S3 ESTOP
028 Download En	102 Inv Id Error	310 AC Brown-out	432 Brk S4 ESTOP
029 Balance Err	103 Inv Iq Error	311 AC All Err	433 Brk S5 ESTOP
030 MotorRun Err	104 Inv Ix Offst	312 DBTR ShrtErr	434 Brake S3 SAS
031 SlipFtrReset	105 Inv Iy Offst	313 AC/DC Calib	435 Brake S4 SAS
032 SlipPhanRuns	106 Inv Iz Offst	314 Cnv Res FltV	436 Brake S5 SAS
033 SlipBlockage	107 Inv Gate Flt	315 Cnv Res FltF	437 Bk UCM Relay
034 SlipDownwrds	108 Inv HW Oct	316 BatOverVolt1	438 Brk Cur Undr
035 SSO Active	109 Overload	317 BatUnderVolt	Motion Faults
036 SSO Success	110 Drive Limit	318 OCBT Under	500 Overspeed
037 SlipOutOfDz	111 No Id fdbk	319 Cnv i imbal	501 Pos Tracking
038 SlipDirUnclr	112 No Iq fdbk	320 CNV NBus Flt	502 Vel Tracking
039 RemoteRstCmd	113 Inv IPM Flt	321 INV NBus Flt	503 LRT Motion
040 StartTimeout	114 Curr Ovrload	322 NBus OverFlt	504 Enc Pos Err
041 Estop Requst	115 Brk Chop Err	323 SSO OverVolt	505 SPARE
Self Commissioning	116 Inv HW Ovt	324 SSOAcLineFlt	506 Stopping Err
Events	117 Inv Pfai Flt	325 NoAc-HighPwr	507 Pos at 1LS
050 KP negative	118 Overload Dec	326 Hybrid-DcFlt	508 Pos at 2LS
051 KP not conv	119 Desat Err	Brake Faults	509 Floor at 1LS
		400 D 1 01 030	
052 KI negative	120 Output Cur	400 Brake S1 SAS	510 Floor at 2LS
052 KI negative 053 KI not conv 054 LSIG negativ	120 Output Cur 121 SR1 Err 122 Inv DeSat	400 Brake S1 SAS 401 Brake S2 SAS 402 Brake Status	510 Floor at 2LS 511 1LS & 2LS ! 512 Missing Vane

513	No PRS Trans
	Enc <> Vane
	NTSD failed
	Corr failed
	DDP Error
	BeltCmp Wrng
	RlvPermitErr
	Rllbck Start
	Rllbck Stop
	ManualRescue
	Moved at POF
	No Enc Signl
	NoRlv SpdChk
	NoRlv TooMny
527	NoRlv LostDZ
528	Profile Err
529	No enc fdbck
530	No enc tmout
531	PRS Sigs 1LS
532	PRS Sigs 2LS
533	ARO Overspd
534	ABL Abort:LW
535	Timeout PTR
536	Timeout LB
	No EndRunCmd
	Abort:EndRun
530	LvTransUnclr
540	Shock Detect
540	SinCos Warng
542	Decel Dec El
542	Decel Req Fl SSOoverSpeed
545	SSUOVEISpeed
544	Torq Obs Fit
545	Car Pos Err
546	Torq Obs Flt Car Pos Err Car Vel Err
547	CarEncErr NR CarEncErr LR
548	CarEncErr LR
549	AHC Enc/Vane
550	Crp Time Low
551	CrpSpe Boost CrpSpe inval
552	CrpSpe inval
553	DZ at Decel
554	DZ lost Stop
555	DZ too late
556	APRS step
557	130% Mtr Fra
558	130% Mtr Frq 150% Mtr Frq
559	Enc Nois Flt
560	APB Detected
	perature Faults
600	Inv Tmp Warn
601	
602	Inv Tmp Over Inv Tmp Fail

603	Cnv Tmp Warn
604	Cnv Tmp Over
605	Cnv Tmp Fail
606	Mtr Tmp Over
607	Reactor Temp
608	DBR Tmp Over
609	AC/DC Calibr
610	Batt Ovr Tmp
611	MTC/RTC Flt
612	Inv IGBT tmp
613	HSl Tmp Warn
614	HS1 Tmp Over
615	HS1 Tmp Fail
616	HSu Tmp Warn
617	HSu Tmp Over
618	HSu Tmp Fail
	-
	e Faults
700	Safety Chain
701	No Man Input
702	Prechrg Time
703	S Rly Fault
704	DBD Fault
705	E2 Invalid
706	E2 Write Lim
707	ADC Offset
708	Cmd to Abort
709	PRS SigNoise
710	UIB DIB Err
711	DBD Shutdown
712	PostTrq Time
713	Block by xxx
714	B_MODE Err
715	ARO BatPower
716	Illegal Cmd
717	Triac Stuck
718	PRS Config
719	
720	
	PwmExistsFlt
722	
723	
724	UCM in Slide
725	UCM BrkBlock
726	Tmout SfcMsg
727	TOStp SfcMsg
728	Slack Rope
729	SysTrip OCBT
730	S2 RlyFault
731	PX RlyFault
732	MX RlyFault
733	No Q4 Reset
750	ARU Failure

751	Dischrg Batt
752	Bat Chrg Flt
760	
761	
762	Batt Flt
763	
764	ARO Alarm CR
765	LVD Prechrg
770	24VsupplyFlt
771	
772	VintSuplyFlt Prechrg Fail
	Overrun Faults
	1ms Task
800	
801	10ms Task 40ms Task
802	
803	Cnv Task
804	Inv Task
805	200ms Task
	Illegal Pwm
	munication
Faul	
900	MCSS Timeout
901	SVC Tool Err
	CAN Err
903	E2 CommWrite
904	LWSS Timeout
905	LWSS Bad Val
906	No LS Msg
907	Primary CRC
908	Drive CRC
909	CAN BusOff CAN OPB_Init
910	CAN OPB_Init
911	CAN TxQ Full
912	No FloorInfo MCSS Warning
913	MCSS Warning
914	Power E2 Err
915	LWSS not cal
916	LWSS not cal Power E2 Rng
917	CPLD Ver Flt
918	ARO Ver Flt
	ARO Ver Flt
918	ARO Ver Flt Powrbrd miss
918 919	ARO Ver Flt Powrbrd miss
918 919 920	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum
918 919 920 921	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn
918 919 920 921 922	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn
918 919 920 921 922 923 924	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War
918 919 920 921 922 923 924 925	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War No CAN-PRS
918 919 920 921 922 923 924 925 926	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War No CAN-PRS CAN PRS Msg
918 919 920 921 922 923 924 925 926 927	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War No CAN-PRS CAN PRS Msg DSP2FPGA Wrn
918 920 921 922 923 924 925 926 927 928	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War No CAN-PRS CAN PRS Msg DSP2FPGA Wrn DSP2FPGA Flt
918 919 920 921 922 923 924 925 926 927	ARO Ver Flt Powrbrd miss Micro ChkSum FPGA ChkSum FLASH Warn FPGA Warn Micro War No CAN-PRS CAN PRS Msg DSP2FPGA Wrn

931	Micro VerFlt
	SBSB Fault
933	PosTimeStamp
934	APRS timeout
935	AHC comm flt
936	FloorTabCnfl
937	FloorTabPubl
938	FT TopBotBad
939	FT E2 writes
940	FT CRC bad
950	Tandem Warm
951	Tandem Comm
952	Drv x Comm
953	Drv x Estop
954	Drv x SAS
955	Drv x Temp
956	Drv x Warn
957	Drv x Block
958	Drv x Limit
959	DisInfo Miss
960	SF Write Lim

6.4.8 Event Menu Detailed Descriptions

The following list includes all events detected.

Column 1: The name of the event, including the event code

Column 2: The response to the event, followed by the number of occurrences in series that leads to a drive blockage (see Section 6.4.3).

Column 3: A description of the event including possible causes and potential solutions.

Description SVT Display 000 Power On Power was applied to the drive. L 001 New Run A new run was initiated. T 002 SPARE T Not used. W 003 Stack Warn The stack usage has exceeded an acceptable limit. The power fail signal in the hardware was activated. 004 Power Down Т Maskable via parameters "MaskOut Warning1" and 2. 005 Extern FLASH W The GDCB FLASH memory has failed. 006 Extern RAM W The GDCB RAM memory has failed. 007 OMU Present I Indicates that a valid OMU is plugged into the drive OMU port at power-up. 008 OMU Prohibit Indicates that an OMU software upgrade is prohibited because the previous T run was TCI. The status of the permissive can be viewed in the SVT parameter OMU Prohibited. Solution If this fault occurs, it can be cleared by performing an ERO run (the ERO run confirms that the mechanic is in the hallway). Indicates that the drive is in Manual Mode. 009 Manual Mode T 010 B MODE Applicable only when Interface Type = 2 or 3. I Applicable only when "ARO Type" = 2 or 3. Logged when the drive received "B MODE signal" from Battery controller. Applicable only when Interface Type = 1. 011 Battery Mode I Indicates the drive is in battery (ARO-EN) mode operating on 48Vdc battery supply. Logged when the drive received SpbMode message "BatteryMode" from SPBC3. Applicable only when Interface Type = 1. 012 LearnRun REO L Indicates that the floor table in the drive is invalid and that a new learn run is required. 013 Reset DSP The DSP was reset using the SVT menu 2-5. T 014 Clear Log The event log was cleared using SVT menu 2-3. I 015 AutoTun Mode The drive is in Auto Tune mode. L Applicable only for "JIS Function 0/1" = 1 016 Earthquake Indicates earthquake detection. This mode is initiated by the recovery signal from MCSS. In this mode, shock detection and the torque pulsation detection are activated. 017 Block Cleard Indicates that a blockage condition was cleared either via the service tool T menu or by a CAN message. 018 ALWA CONVRGD Indicates that ALWA has converged with a fixed gain and offset. L 019 ALWA ERROR Indicates that ALWA has an algorithmic error. L 020 ALWA RESET I Indiactes either an automatic reset by the algorithm or through the service tool was done. This resets the gain and the offset to 1 and 0 respectively. 021 ALWA DIVERGD Indicates that the ALWA algorithm has not converged. L Applicable only for "JIS Function 0/1" = 1 022 EOAR Clear L EQAR mode was cleared by clear command.

6.4.9 Information Events

023 ARO H1th Chk I The drive has received an ARO Health check request either from the MCSS or from SVT M455 "Opt ARO Test 5-5". If the drive accepts the request, it will log "024 ARO Active", and attempt to perform the health check. The request is only accepted while in IDLE and no ARO faults. 024 ARO Active I The drive accepts the request, and logs "024 ARO Active", and attempts to perform the ARO health check. 025 ARU Type Mis I The wrong ARU type was selected during installation. Specifically, "ARO Release? 1/2" was set to 1, but type 2 hardware is present. The check is done only when starting ARO operation. 026 UCM-EN clear I Applicable only when starting ARO operation. 026 UCM-EN clear I Applicable only when Interface Type I. 1 Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Drive Type is 416G drive. 030 MctorRun Err I Applicable only when Self BTI Block =0. 031 SlipFtrReset W Static Slip Mitigation feature was reset. 032 SlipPhanRuns W Static Slip Mitigation feature was reset.			
024 ARO Active I The drive accepts the request, and logs "024 ARO Active", and attempts to perform the ARO health check. 025 ARU Type Mis I The wrong ARU type was selected during installation. Specifically, "ARO Release? 1/2" was set to1, but type 2 hardware is present. The check is done only when starting ARO operation. Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type Should be 3 for NSAA ARU ARO Type Should be 1 for ARU1 or 2 for ARU2 026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Self BTI Block =0. The detection unbalance torque generates an event at less than +/- 10%. 030 MotorRun Err I Applicable only was detected and phantom runs were requested from the dECB. This event is logged again only when the requested from the GECB. This event is logged again only when the requested from the GECB. This event is logged again only when the requested from the GECB. This event is logged again only when the requested from the GECB. This event is logged again only when the requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip wa	023 ARO Hlth Chk	I	MCSS or from SVT M455 "Opt ARO Test 5-5". If the drive accepts the request, it will log "024 ARO Active", and attempt to perform the health
perform the ARO health check. 025 ARU Type Mis I The wrong ARU type was selected during installation. Specifically, "ARO Release? 1/2" was set to1, but type 2 hardware is present. The check is done only when starting ARO operation. Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 Should be 4 for ARU1 or 2 for ARU2 026 UCM-EN clear I Applicable only when Interface Type 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 "C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I 1 Applicable only when Self BTI Block = 0. The detection unbalance torque generates an event at less than +/- 10%. 030 MotorRun Err I 1 Applicable only wrds was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipPlockage W 034 SlipDownwrds W 035 SS0 Active I 036 SS0 Success I 037 SlipDutoffz W 038 SlipDirUnclr			
025 ARU Type Mis I The wrong ARU type was selected during installation. Specifically, "ARO Release? 1/2" was set to1, but type 2 hardware is present. The check is done only when starting ARO operation. Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 O26 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 4160 drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Self BTI Block =0. The detection unbalance torque generates an event at less than +/- 10%. 030 MotorRun Err I Applicable only was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 032 SlipPhanRuns W Static Slip was detected in excess of 50mm or 010mm/h => a system blockage was requested. 033 SlipBlockage W Static Slip was detected in excess of 50mm or 010mm/h => a system blockage was requested. 0	024 ARO Active	I	
Release? 1/2" was set to1, but type 2 hardware is present. The check is done only when starting ARO operation. Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 Should be 1 for ARU1 or 2 for ARU2 026 UCM-EN clear 1 Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 1 Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En 1 This event indicates the parameter download mode has been enabled. 029 Balance Err 1 Applicable only when Self BTI Block =0. The detection speed generates an event at less than +/- 10%. 030 MotorRun Err 1 Applicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip Mitigation feature was reset. 033 SlipBlockage W Static Slip wards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 034 SlipDownwrds W Static Slip was detected in downward direction. 035 SSO Active I Reserved		_	
is done only when starting ARO operation. Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 Should be 4 for NSAA ARU O26 UCM-EN clear 1 Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 1 Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1°C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En 1 This event indicates the parameter download mode has been enabled. 029 Balance Err 1 Applicable only when Self BTI Block = 0. The detection unbalance torque "during down running in car no load. The detection seed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip Mitigation feature was reset. 032 SlipPhanRuns W Static Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.	025 ARU Type Mis	I	
Check the settings of the following parameters: Interface Type Should be 3 for NSAA ARU ARO Type 026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Self BTI Block =0. The detection unbalance torque generates an event at less than +/- 10%. The detection unbalance torque generates an event at less than +/- 10%. The detection unbalance torque generates an event at less than +/- 10%. The detection unbalance torque generates an event at less than +/- 10%. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipBlockage W Static Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested. 034 SlipDownwrds W Static Slip was detected ue to 1LV leaving the vane while the brake was dropped. 037 SlipOutofDz W Static Slip was detected conclusiv			
Interface Type Should be 3 for NSAA ARU ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 Should be 4 for NSAA ARU ARO Release? 1/2 Should be 1 for ARU1 or 2 for ARU2 026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. . 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Self BTI Block =0. The detection unbalance torque generates an event at less than +/- 10%. Applicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed. The detection speed generates i.e. higher slip was detected. 031 SlipFtrReset W Static Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipBlockage W Static Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested. <t< td=""><td></td><td></td><td></td></t<>			
ARO Type Should be 4 for NSAA ARU ARO Release? 1/2 Should be 1 for ARU1 or 2 for ARU2 026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. . 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Self BTI Block = 0. The detection speed generates an event at more than zero speed. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip Mitigation feature was reset. 032 SlipPhanRuns W Static Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested. 034 SlipDownwrds W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 035 SSO Success I Reserved 036 SSO Success I Reserved 037 SlipDurofIz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped.			
ARO Release? 1/2 Should be 1 for ARU1 or 2 for ARU2 026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Check Unbalance 1. The detection unbalance torque" during down running in car no load. The detection speed generates an event at less than +/- 10%. 030 MotorRun Err I Applicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip Mitigation feature was reset. 032 SlipPhanRuns W Static Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipBlockage W Static Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested. 034 SlipDownwrds W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr			21
026 UCM-EN clear I Applicable only when Interface Type = 1. Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared. 027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1°C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Check Unbalancee 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%. 030 MotorRun Err I Applicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip Upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipBlockage W Static Slip upwards was detected in downward direction. 035 SSO Active I Reserved 036 SSO Success I Reserved 037 SlipDirUnclr W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W Static Slip was detected due to 1LV leaving the vane while the brake was dropped.			ARO Type Should be 4 for NSAA ARU
Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared.027 Temp is 0IApplicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event.028 Download EnIThis event indicates the parameter download mode has been enabled.029 Balance ErrIApplicable only when Check Unbalance= 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Unitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart t			
Indicates that a blockage according to 723 UCM in Run, 724 UCM in Slide or 725 UCM BrkBlock has been cleared.027 Temp is 0IApplicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event.028 Download EnIThis event indicates the parameter download mode has been enabled.029 Balance ErrIApplicable only when Check Unbalance= 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Unitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart t	026 UCM-EN clear	I	Applicable only when Interface Type = 1.
027 Temp is 0 I Applicable only when Drive Type is 416G drive. The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event. 028 Download En I This event indicates the parameter download mode has been enabled. 029 Balance Err I Applicable only when Check Unbalance = 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%. 030 MotorRun Err I Applicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed. 031 SlipFtrReset W Static Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected. 033 SlipBlockage W Static Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested. 034 SlipDownwrds W Static Slip was detected in downward direction. 035 SSO Active I Reserved 037 SlipOutofDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command			
The detection temperature generates an event at less than 1 °C. When the thermistor circuit is opened, the drive outputs the same event.028 Download EnI029 Balance ErrIApplicable only when Check Unbalance=1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved037 SlipDirUnclrWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.039 RemoteRstCmdI1The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdI040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			or 725 UCM BrkBlock has been cleared.
When the thermistor circuit is opened, the drive outputs the same event.028 Download EnIThis event indicates the parameter download mode has been enabled.029 Balance ErrIApplicable only when Check Unbalance= 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.	027 Temp is 0	I	Applicable only when Drive Type is 416G drive.
028 Download EnIThis event indicates the parameter download mode has been enabled.029 Balance ErrIApplicable only when Check Unbalances 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip Mitigation feature was reset.033 SlipBlockageWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			The detection temperature generates an event at less than 1 °C.
029 Balance ErrIApplicable only when Check Unbalance= 1. The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutofDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStatt timeout of rescue run or correction run. Position is invalidated.			When the thermistor circuit is opened, the drive outputs the same event.
The drive calculate "unbalance torque" during down running in car no load. The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutofDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStatt timeout of rescue run or correction run. Position is invalidated.	028 Download En	I	This event indicates the parameter download mode has been enabled.
The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrW039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.	029 Balance Err	I	Applicable only when Check Unbalance= 1.
The detection unbalance torque generates an event at less than +/- 10%.030 MotorRun ErrIApplicable only when Self BTI Block =0. The detection speed generates an event at more than zero speed.031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrW039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			The drive calculate "unbalance torque" during down running in car no load.
The detection speed generates an event at more than zero speed.031 SlipFtrResetW032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIO40 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			The detection unbalance torque generates an event at less than +/- 10%.
031 SlipFtrResetWStatic Slip Mitigation feature was reset.032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.	030 MotorRun Err	I	Applicable only when Self BTI Block =0.
032 SlipPhanRunsWStatic Slip upwards was detected and phantom runs were requested from the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			The detection speed generates an event at more than zero speed.
the GECB. This event is logged again only when the requested phantom run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.	031 SlipFtrReset	W	
run interval decreases, i.e. higher slip was detected.033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.	032 SlipPhanRuns	W	Static Slip upwards was detected and phantom runs were requested from
033 SlipBlockageWStatic Slip upwards was detected in excess of 50mm or of 10mm/h => a system blockage was requested.034 SlipDownwrdsWStatic Slip was detected in downward direction.035 SSO ActiveIReserved036 SSO SuccessIReserved037 SlipOutOfDzWStatic Slip was detected due to 1LV leaving the vane while the brake was dropped.038 SlipDirUnclrWThe direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed.039 RemoteRstCmdIThis information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds.040 StartTimeoutWStart timeout of rescue run or correction run. Position is invalidated.			the GECB. This event is logged again only when the requested phantom
system blockage was requested. 034 SlipDownwrds W Static Slip was detected in downward direction. 035 SSO Active I Reserved 036 SSO Success I Reserved 037 SlipOutOfDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W			run interval decreases, i.e. higher slip was detected.
034 SlipDownwrds W Static Slip was detected in downward direction. 035 SSO Active I Reserved 036 SSO Success I Reserved 037 SlipOutOfDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.	033 SlipBlockage	W	Static Slip upwards was detected in excess of 50mm or of 10mm/h => a
035 SSO Active I Reserved 036 SSO Success I Reserved 037 SlipOutOfDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.			
036 SSO Success I Reserved 037 SlipOutOfDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.		W	Static Slip was detected in downward direction.
037 SlipOutOfDz W Static Slip was detected due to 1LV leaving the vane while the brake was dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.	035 SSO Active		Reserved
dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W	036 SSO Success		
dropped. 038 SlipDirUnclr W The direction of the Static Slip was not detected conclusively (1sensor & brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W	037 SlipOutOfDz	W	Static Slip was detected due to 1LV leaving the vane while the brake was
brake dropped & imbalance<30%) => closer edge was assumed. 039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.			dropped.
039 RemoteRstCmd I This information is reset command from MCSS. If drive receive the reset command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.	038 SlipDirUnclr	W	The direction of the Static Slip was not detected conclusively (1sensor &
command, the Drive will automatically reset after 3 seconds. 040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.			
040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.	039 RemoteRstCmd		
040 StartTimeout W Start timeout of rescue run or correction run. Position is invalidated.			command, the Drive will automatically reset after 3 seconds.
041 Estop Requst E RESERVED	040 StartTimeout	W	
	041 Estop Requst	Е	RESERVED

6.4.10 Self Commiss		· · · · · · · · · · · · · · · · · · ·
SVT Display		Description
050 KP negative	Е	Either the voltage or current was zero or negative during the KP test.
051 KP not conv	E	The KP test did not converge within the iteration limit.
052 KI negative	Е	Either the voltage or current was zero or negative during the KI test.
053 KI not conv	Е	The KI test did not converge within the iteration limit.
054 LSIG negativ	Е	Either the voltage or current was zero or negative during the LSIG test.
055 RTCr negativ	Е	Either the voltage or current was zero or negative during the RTC REAL test.
056 RTCr not cnv	Е	The RTC REAL test did not converge within the iteration limit.
057 SWEEP negatv	Е	Either the voltage or current was zero or negative during the SWEEP test.
058 RTC negative	Е	Either the voltage or current was zero or negative during the RTC test.
059 RTC is zero	Е	The RTC could not be computed due to zero result during the RTC IMAG INIT test.
060 RTC negative	E	Either the voltage or current was zero or negative during the RTC IMAG COMPUTE test.
061 RTC not conv	Е	The RTC IMAG COMPUTE test did not converge.
062 ID&V diverge	Е	The IMAG and ITORQ test diverged.
063 NO Op Point	Е	The IMAG and ITORQ test did not converge within the iteration limit.
064 Imag>drv Rtd	Е	The IMAG result exceeded the rated drive current.
065 Wrong direct	Е	The car is running in the wrong direction required by the test.
066 PTR Timeout	Е	The test timed-out waiting for PTR.
067 Car nt empty	Е	The car is not empty as required by the test.
068 FT RTC !conv	Е	The fine tune RTC test (RTC inner loop) did not converge within the iteration limit.
069 FT not conv	Е	The fine tune RTC test (main outer loop) did not converge within the iteration limit.
070 FT ID ! conv	Е	The fine tune RTC test (IMAG inner loop) did not converge within the iteration limit.
071 FT Itq !comp	Е	The fine tune RTC I torque computation failed.
072 Ineria !conv	Е	The INERTIA test did not converge within the iteration limit.
073 Run too shrt	Е	The run length was too short; did not meet minimum run length required by the test.
074 Drive Fault	Е	A drive fault occurred during the self commisioning test.
075 Drive SAS	Е	A drive stop and shutdown occurred during the self commisioning test.
076 ID/IQ divrge	-	RESERVED
077 RTCr Real<0	W	The real impedence was negative during the RTCr test.
079 Kp RTR Fault	Е	The KP test timed-out waiting for PTR.
-		Not supported

6.4.10 Self Commissioning Events

SVT Display		Description
100 Inv SW Oct	E4	The magnitude of the inverter current exceeded an allowed threshold.
		Possible Causes & Solutions
		• Incorrect motor phasing \rightarrow change parameter Motor Phase 0/1.
		• Shorted motor phase \rightarrow check motor wiring continuity.
		• The fault threshold can be temporarily adjusted by the parameter Inv I Limit %.
		Applicable when Interface Type = 0 or 1:
		OCT(A) = Drive I fullscale * Inv I Limit %* 0.9 * 1.05
		(Drive I fullscale: 402→ 80A 404→110A)
		Applicable when Interface Type = 2 or 3:
		OCT(A) = Drive I fullscale * Inv I Limit %* 0.9 * 1.25
101 Inv I Imbal	E4	The sum of the three motor currents exceeded 10% full-scale current.
		Possible Causes & Solutions
		• Ground fault \rightarrow check there are no motor phases shorted to ground.
		• Signal noise \rightarrow check that wiring guidelines are followed.
102 Inv Id Error	E4	The indicated inverter current regulator error exceeded an allowable
103 Inv Iq Error		threshold.
		Possible Causes & Solutions
		• Current regulators are not tuned correctly \rightarrow check proper motor
		parameter settings (see Section 9).
104 Inv Ix Offst	E	The indicated inverter phase current offset exceeded 5% of full-scale.
105 Inv Iy Offst		
106 Inv Iz Offst		Possible Causes & Solutions
		• Defective circuit \rightarrow change drive package (if occurs permanently).
107 Inv Gate Flt	E4	NOT applicable when Drive Type is 25A.
		An inverter IGBT gate supply voltage fault was detected (inverter PF_IGBT
		signal on most drives).
		Possible Causes & Solutions
		• Defective or shorted gate power supply \rightarrow change drive package (if
		occurs permanently).

108 Inv HW Oct	E4	 NOT applicable when Drive Type is 25A. For 60A V.2 – drives: The power section has detected a fault and set the discrete input (ERR1/INV_FLT: P1-12) to the GDCB. Because this input is shared by both HW Overcurrent and HW Overvoltage errors, the measured DC bus voltage is used to distinguish between them: - DC bus voltage is below a specified threshold → this fault was declared. - DC bus voltage is above a specified threshold → 116 Inv HW Ovt would have been declared. For all other drives except the 25A drive: The inverter current exceeded a preset level, detected via hardware, (ERR1/INV_FLT: P1-12) to the GDCB.
		Note: This fault indicates a too high motor current or an IGBT short circuit current. Then all PWM control is immediately stopped.
		Passible Causes & Solutions
		 Possible Causes & Solutions Incorrect motor phasing → change parameter Motor Phase 0/1.
		• Shorted motor phase \rightarrow check motor wiring continuity.
		 Defective hardware (e.g. shorted IGBT) → change drive package (if occurs permanently)
109 Overload	E4	An overload condition has been detected. The drive exceeded the
		maximum time allowed operating at the rated current of the motor.
		Possible Causes & Solutions
		• Excessive friction in system \rightarrow check for dragging brake or hoistway
		interference.
		• The drive is undersized for the installed duty \rightarrow confirm system inertia.
		• The fault threshold can be adjusted by the parameters: Overload
		sec, Rated mtr i Arms, and Rated 81inim PU, but should not be increased by more than 10%.
110 Drive Limit	W	The drive is operating at its rated current limit.
111 No Id fdbk	E4	An error has been detected with the current feedback of the inverter during
112 No Iq fdbk		magnetization of the motor at the beginning of the run.
		Possible Causes & Solutions
		• Open motor phase \rightarrow check motor wiring continuity.
		• Bad current sensor → return unit for service.
110		See parameters Vd out thresh PU and Vq out thresh PU.
113 Inv IPM Flt	E4	Applicable only when Drive Type is 25A or LCRD. Indicates a fault has been detected from the inverter Intelligent Power Module (IPM).
		Possible Causes & Solutions
		 Defective or shorted gate power supply → change drive package (if occurs permanently).
		• Incorrect motor phasing \rightarrow change parameter Motor Phase 0/1.
		• Shorted motor phase \rightarrow check motor wiring continuity.
114 Curr Ovrload	E4	Not used (was applicable only for non-regen drives).
115 Brk Chop Err	E4	Not used (was applicable only for non-regen drives).

116 Inv HW Ovt 117 Inv Pfai Flt	E4	 Applicable only for 60A V.2 drives. The power section has detected a fault and set the discrete input (ERR1/INV_FLT: P1-12) to the GDCB. Because this input is shared by both HW Overcurrent and HW Overvoltage errors, the measured DC bus voltage is used to distinguish between them: DC bus voltage is above a specified threshold → this fault was declared. DC bus voltage is below a specified threshold → 108 Inv HW Oct would have been declared. Applicable only for 60A/120A/160A V.2 and 20A/30A/40A V.2.1 and 30A/40A V.2.2 drives. Inverter PWM activity has been detected during IDLE (when S1 & S2 are dropped): after 2 seconds in IDLE the inverter PWM driver was still active; or after 4 seconds in IDLE the signal PF_IGBT: P1-13 was LOW which indicated a still active IGBT power supply although it should be switched OFF. Possible Causes & Solutions Defective gate driver or power supply → change drive package (if
		occurs permanently).
118 Overload Dec	D4	Applicable only for "JIS Function 0/1" = 1
		See 109 Overload.
119 Desat Err	E4	The inverter current and the converter current exceeded a preset level, detected via hardware.
120 Output Cur	-	Reserved for Ultra drive.
121 SR1 Err	E4	 Applicable only for "JIS Function 0/1" = 1 and "Drive Type" = 428 or 460. SR1 was off with Inverter running. The wiring of Inverter output is disconnected with SR1-OFF. <u>Possible Causes & Solutions</u> Check wiring around SR1 relay and P5-5 of GDCB Check a SR1 control of UCMP module
122 Inv DeSat	E4	Not supported
123 CnvOverload	E4	Applicable to ACD5 only. This fault indicates the current ratings of the converter have been exceeded. See related parameters:" CnvOverload sec", "Rated CnvICon PU", "Rated CnvIAcc PU".

6.4.12 Converter Cu		
SVT Display		Description
200 Cnv SW Oct	E4	The magnitude of the converter current exceeded an allowed threshold.
		Possible Causes & Solutions
		• Defective hardware \rightarrow change drive package (if occurs permanently).
		 The fault threshold can be temporarily adjusted by the parameter
		Cnv I Limit %.
		Applicable when Interface Type = 0 or 1:
		OCT(A) = Drive I fullscale * Cnv I Limit %* 0.9 * 1.05
		(Drive I fullscale: $402 \rightarrow 80A 404 \rightarrow 110A$)
		Applicable when Interface Type = 2 or 3:
		OCT(A) = Drive I fullscale * Cnv I Limit %* 0.9 * 1.25
201 Cnv Id Error	E4	The indicated converter current error exceeded 30% of full-scale.
202 Cnv Iq Error	- ·	
1		Possible Causes & Solutions
		• Current regulators are not tuned correctly \rightarrow check proper parameter
		settings (see parameter Cnv Custom 0/1).
203 Cnv Ix Offst	E	The indicated converter phase current offset exceeded 5% of full-scale.
204 Cnv Iy Offst	_	
-		Possible Causes & Solutions
		• Defective circuit \rightarrow change drive package (if occurs permanently).
205 Cnv Gate Flt	E4	NOT applicable when Drive Type is 25A.
		A converter IGBT gate supply voltage fault was detected (converter
		PF_IGBT signal on most drives).
		,
		Possible Causes & Solutions
		• Defective or shorted gate power supply \rightarrow change drive package (if
		occurs permanently).
206 Cnv HW Oct	E4	NOT applicable when Drive Type is 25A.
		The converter current exceeded a preset level, detected via hardware.
		Note: This fault indicates a too high line input current or an IGBT short
		circuit current.
		Possible Causes & Solutions
		• Defective hardware \rightarrow change drive package (if occurs permanently).
207 Cnv Gnd Flt	S	Applicable only when Drive Type is 60A.
		A ground fault was detected on the converter.
		Possible Causes & Solutions
		• Ground fault \rightarrow disconnect drive from utility power and check that there
		are no phases shorted to ground.
208 Bus Cap Fail	S	The estimated power loss in the drive exceeded a limit. This indicates that
		excessive power is being dissipated in the drive and is a strong indication
		that a DC link capacitor has failed. The threshold for this fault is set by the
		SVT parameters Ploss Thr pre %, Ploss Thr idle %, and Ploss
	1	Thr run %. See also ARO Vbus fil ms.

209 DC Link OCT S Applicable only when Drive Type is 40A. Indicates excessive DC link current. Possible Causes & Solutions • Shorted motor phase → check motor wiring continuity. 210 Cnv IPM Flt E4 Applicable only when Drive Type is 25A or LCRD. Indicates a fault has been detected from the converter Intelligent Power Module (IPM). Possible Causes & Solutions • Defective or shorted gate power supply → change drive package (if occurs permanently). • Defective IPM hardware → change drive package (if occurs permanently). • Defective IPM hardware → change drive package (if occurs permanently). 211 Battry Chrgd E4 Applicable only during ARO (EN) mode. The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault may also occur in concert with certain loss of safety chain events, but this should not be a concern (loss of safety chain causes an estop anyways). This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main				
• Shorted motor phase → check motor wiring continuity. • Shorted motor phases shorted to ground. 210 Cnv IPM Flt E4 Applicable only when Drive Type is 25A or LCRD. Indicates a fault has been detected from the converter Intelligent Power Module (IPM). Possible Causes & Solutions • Defective or shorted gate power supply → change drive package (if occurs permanently). • Defective IPM hardware → change drive package (if occurs permanently). 211 Battry Chrgd E4 Applicable only during ARO (EN) mode. The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.	209 DC Link OCT	S		
210 Cnv IPM Flt E4 Applicable only when Drive Type is 25A or LCRD. Indicates a fault has been detected from the converter Intelligent Power Module (IPM). Possible Causes & Solutions • Defective or shorted gate power supply → change drive package (if occurs permanently). • Defective or shorted gate power supply → change drive package (if occurs permanently). • 211 Battry Chrgd E4 Applicable only during ARO (EN) mode. The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.			 Shorted motor phase → check motor wiring continuity. Ground fault → disconnect drive from utility power and check that there 	
 Defective or shorted gate power supply → change drive package (if occurs permanently). Defective IPM hardware → change drive package (if occurs permanently). Ground fault → disconnect drive from utility power and check that there are no phases shorted to ground. 211 Battry Chrgd E4 Applicable only during ARO (EN) mode. The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1. 	210 Cnv IPM Flt	E4	Applicable only when Drive Type is 25A or LCRD. Indicates a fault has been detected from the converter Intelligent Power	
are no phases shorted to ground. 211 Battry Chrgd E4 Applicable only during ARO (EN) mode. The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault may also occur in concert with certain loss of safety chain events, but this should not be a concern (loss of safety chain causes an estop anyways). This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.			 Defective or shorted gate power supply → change drive package (if occurs permanently). Defective IPM hardware → change drive package (if occurs permanently). 	
The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging current is controlled by the parameter Max Bat Chrg I A. 212 Cnv Vmag Flt E Generally, this fault occurs when power is removed from the drive AC input during a regenerative run. This fault may also occur in concert with certain loss of safety chain events, but this should not be a concern (loss of safety chain causes an estop anyways). This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run. If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.			are no phases shorted to ground.	
during a regenerative run. This fault may also occur in concert with certain loss of safety chain events, but this should not be a concern (loss of safety chain causes an estop anyways). This fault management is designed to protect other in-ciruit controller components when the AC line is lost during a regenerative run.If this fault occurs in such a way that interrupts normal elevator operation, then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter.This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.	211 Battry Chrgd	E4	The drive detected charging current into the battery during ARO, which is not allowed. The threshold for the charging currenmt is controlled by the	
then this condition should be reported, and the fault management can be disabled by increasing the Cnv Vmag Thrs PU parameter. This fault management is active only when the drive is regenerating and only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.	212 Cnv Vmag Flt	E	during a regenerative run. This fault may also occur in concert with certain loss of safety chain events, but this should not be a concern (loss of safety chain causes an estop anyways). This fault management is designed to protect other in-ciruit controller components when the AC line is lost during	
only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set to 1.			then this condition should be reported, and the fault management can be	
010 Output Turke 1 F4 Net supported			only when the nominal AC line voltage parameter AC Main Vrms is set <= 400. This fault management is not active when Low Volt Op 0/1 is set	
213 Chv I Impal E4 Not supported	213 Cnv I Imbal	E4	Not supported	
	214 Cnv DeSat	E4	Not supported	

6.4.13 Voltage Fault	S	
SVT Display		Description
300 DC Bus Over	E3	The DC bus voltage was greater than 108% of the nominal bus voltage of750 VDC.Possible Causes & SolutionsCheck parameter DBR Mode0-3 is set correctly.Check parameter Inertiakg-m2 is not set too high.One way to estimate the inertia is to use the following formula: $J = 2 + 6 * DUTY_LOAD * (SHV_RADIUS^2)$ Other ways to estimate inertia are given in Sections 9.1 and 9.2.
301 DC Bus Under	E6	The DC bus voltage exceeded a limit. The limits are: For 415 < Vac <= 480, limit = 70% of nominal (750). For 380 <= Vac <= 415, limit = 309 Vdc. For Vac < 380, limit = 70% of nominal (750). The nominal ac voltage is determined by the EEPROM parameter: AC Main Vrms.
302 VAC Over	С	The AC line voltage exceeded a limit. The limits are: For 415 < Vac <= 480, limit = 112% of nominal (110% cleared). For 380 <= Vac <= 415, limit = 477 Vrms (469V cleared). For Vac < 380, limit = 115% of nominal (113% cleared). The nominal voltage is determined by the EEPROM parameter: AC Main Vrms.
303 VAC Under	C	 This fault indicates the AC line voltage was below a limit. The limit value depends on whether the drive's "brown-out" functionality is enabled or not: For CAN interface (interface type 1) and not JIS and HSOVF, where profile generation is internal to the drive, the brown-out function is enabled. If the AC line voltage falls 15% below nominal, the brown-out function is activated, the speed is reduced, and the "310 AC Brown-out" warning is logged. If the AC line voltage falls to 30% below nominal, then additional speed reduction occurs and the "303 VAC Under" fault is logged. For other interfaces, where profile generation is external to the drive, the brown-out function is disabled. If the line voltage falls to 15% below nominal, then the "303 VAC Under" fault is logged. In both cases, the fault response to "303 VAC Under" is: complete the current run, go to drive state shutdown, exit shutdown as soon as the fault clears. The fault is self clearing. "Nominal" voltage is defined as follows: 380 Vrms for 380 <= Vac <= 415; Vac otherwise,

	E	Only for JIS and HSOVF with Interface type CAN, The AC line voltage exceeded a limit. The limits are: For 415 < Vac <= 480, limit = 80% of nominal. (85% cleared) For 380 <= Vac <= 415, limit = 304 Vrms. (323V cleared) For Vac < 380, limit = 80% of nominal. (85% cleared) The nominal voltage is determined by the EEPROM parameter: AC Main Vrms.
304 VAC Imbal	С	The AC line input voltages differ from each other by more than 10%.
305 PLL Unlock	E	The phase lock loop on the AC input voltage has unlocked. This is likely to occur when you try to run with a damaged IGBT. This fault sets the SAS flag.
306 Single Phase	S	This fault is declared when the drive is set to single-phase mode, and the T phase is connected to a live input. The power during single-phase operation should be connected to R and S phases only and the T-phase should be left open. See EEPROM parameter: Single Phase 0-3
307 PLL Freq Rng	E	This fault is declared when the drive ac line frequency estimate is outside of a frequency band specified by the parameter PLL freq band Hz for a amount of time specified by the parameter PLL freq time ms, while there is no PLL unlock fault. This fault is logged whenever the AC line is disconnected. Repeated logging may be an indication of a problem with the AC line.
308 Welded Mx/Px	S	When the drive enters the power down state, if the DC Bus voltage does not drop below a voltage threshold within a (drive-type depending) wait time, the system will declare that the MX and/or PX contacts may be welded. Warning: Do not cycle power to drive until fault is verified. Check the "Inp:Vrms Vdc" SVT display to verify whether the Vdc is actually stuck to a high value (1.41 times the Vrms value) while the state of MX and PX in the "MX PX DX BX" SVT display is actually "0". If these conditions are met (high Vdc and "0" for <u>both</u> MX and PX), then DO NOT ATTEMPT TO CYLE POWER TO THE DRIVE. This drive may have a real welded MX or PX condition that needs to addressed. For this condition, power down, lock out/tag out energy source, and ship drive back to factory.
309 Vscales off	W	This fault is logged when the measured AC line voltage and measured DC bus voltage disagree significantly. This check is performed only after M1 is picked after the bus has had enough time to settle to its quiescent value. This fault may indicate that either of the following EEPROM parameters is not set correctly: DC Bus fscale V, AC Line fscale V.
310 AC Brown-out	W	Applicable only for Interface Type 1. This warning indicates that the ac line has dropped 15% below the nominal value. When the ac line drops 30% below nominal, 303 VAC Under fault is logged. The drive will continue to run under the "Brown Out" event with reduced motion profiles. However, in case of "303 VAC Under", the drive will finish the current run and not accept any further runs. <i>Maskable via parameters "MaskOut Warning1" and 2.</i>

	I —	
311 AC All Err	E	This fault can occur for one of two reasons:
		1. The AC line voltage exceeded a limit above the 302 VAC Over threshold. The limits are:
		For 415 < Vac <= 480, limit = 125% of nominal.
		For 380 <= Vac <= 415, limit = 519 Vrms.
		For Vac < 380, limit = 125% of nominal.
		The nominal voltage is determined by the EEPROM parameter: AC Main
		Vrms. OR
		2. The following three faults occur at the same time while PTR is active:
		302 VAC Over AND
		304 VAC Imbal AND
		307 PLL Freq Rng
312 DBTR ShrtErr	С	Applicable only for ARO Type=NIARO (JIS) and DBR ENE=1 DIS=0.
		This fault is set for detecting the short of DBTR.
		When using a generator, set DBR ENE=1 DIS=0 for 1. When using NIARO mode, set ARO Type for 3.
		Check DBTR if it has broken.
313 AC/DC Calib	1	Applicable only when Low Volt Op $0/1 = 1$.
		This fault is active only in low voltage operation mode. This indicates that
		the calibration process ac voltage sensor versus dc voltage sensor resulted
		with a cross calibration factor that is either larger than 1.5 or less than 0.5.
314 Cnv Res FltV	E	This fault management is active only when the event 304 VAC Imbal is
		active. This fault occurs when a converter voltage transient occurs that exceeds a threshold that is at least 25% greater than the AC Main Vrms
		parameter setting. If this fault occurs, then check that the 3 phase AC input
		is present and is reasonably balanced.
315 Cnv Res FltF	E	This fault occurs when a voltage resonance occurs at the AC input of the
		drive due to an intermittent loss of an input phase. If this fault occurs, then
		check that the 3 phase AC input is present, connected well, and is
		reasonably balanced.
316 BatOverVolt1		This fault is active only for the 60A/120A/160A V.2 drives. Reserved for Low Voltage Drive.
JIU DALOVELVOILL		Maskable via parameters "MaskOut Warning1" and 2.
317 BatUnderVolt	Ì	Reserved for Low Voltage Drive.
		Maskable via parameters "MaskOut Warning1" and 2.
318 OCBT Under		Reserved for Low Voltage Drive.
319 Cnv i imbal	E	Applicable only for drive type 160A-CR. This fault detects current imbalance in the converter and shuts down the
		drive to prevent hardware damage. Current imbalance happens when a
		phase is lost.
320 CNV NBus Flt		Reserved
321 INV NBus Flt		Reserved
322 NBus OverFlt	E1	Reserved
323 SSO OverVolt	E4	Reserved
324 SSOAcLineFlt	E4	Reserved
325 NoAc-HighPwr	E4	Applicable only to ACD5 drive only
		This faultmanagement detects AC line interruption using converter
326 Hybrid-DcFlt	E4	regulator error under during high current condition Applicable to ACD5 drives only
220 HADLIG-DCLIC	L4	The event is logged when the bus voltage error is above the threshold set
		by "VbusRipple LvI V ", for a length of time specified by "VbusRippleTime
		S" and the frequency is between 30HZ to 360HZ.

6.4.14 Brake Faults

SVT Display		Description
400 Brake S1 SAS 401 Brake S2 SAS	C4	The indicated brake switch is in the wrong state. This is checked both when the drive is in the Idle state <i>and</i> when the drive is running. These faults result in complete the run fault response and set the SAS flag.
		Note: this event is also applicable when Brk Sw Type 0-6 is set to 0 or 4 where constant states are required on BS1 and BS2 inputs.
		Possible Causes & Solutions
		• Incorrect parameter value \rightarrow verify correct value of Brk Sw Type 0-6.
		• Incorrect brake switch wiring \rightarrow check brake switch wiring.
		• Brake not lifting → check brake wiring & brake power supply.
		 Insufficient time allowed → see parameters Brk Pick Time ms and Brk Setl Time ms.
402 Brake Status	E4	Applicable only when Int Brk Type 0-4 is set to 0.
		The brake status feedback from the brake module is not in the correct state.
403 Brake BY	E4	Applicable only when Int Brk Type $0-4$ is set to 0.
		One or both of the normally-closed BY contacts are not in the correct state. The BY relays should be energized when PTR is active, <i>before</i> the lift brake command is initiated.
		Possible Causes & Solutions
		• Incorrect wiring to brake module \rightarrow check brake module wiring.
		 Incorrect brake power supply → check brake power supply & wiring. Adjust SVT parameter: SX Pick Time ms
404 Brake I Off	E4	Applicable only when Int Brk Type 0-4 is set to 1.
		When using the internal brake control, this fault is logged when the brake current feedback offset compensation exceeds the asmount specified by the parameter Brk I Offset A.
405 Brake I Drop	E4	Applicable only when Int Brk Type 0-4 is set to 1. When the internal brake control drops the brake, this fault is logged if the brake current feedback exceeds a threshold specified by the service tool parameter Brk I Hold A.
406 Brake I Hold	E4	Applicable only when Int Brk Type 0-4 is set to 1.
		When the internal brake control picks the brake, this fault is logged if the
		brake current feedback is less than a threshold specified by the service tool parameter Brk I Hold A.
407 Brake I Max	E4	Applicable only when Int Brk Type 0-4 is set to 1.
		This fault is logged if the internal brake control current feedback exceeds a threshold specified by the service tool parameter Brk I Max A.

408 Brk S1 ESTOP 409 Brk S2 ESTOP	E4	Applicable only for HSOVF or 160ACR or Brake Torque Mode The indicated brake switch is in the wrong state. This is checked both when the drive is in the Idle state <i>and</i> when the drive is running. These faults result in an immediate ESTOP and set the SAS flag.
		Note: this event is also applicable when Brk Sw Type 0-6 is set to 0 or 4 where constant states are required on BS1 and BS2 inputs. Possible Causes & Solutions
		 Incorrect parameter value → verify correct value of Brk Sw Type 0-6. Incorrect brake switch wiring → check brake switch wiring. Brake not lifting → check brake wiring & brake power supply. Insufficient time allowed → see parameters Brk Pick Time ms and Brk Setl Time ms.
410 Low Speed	W	Visible only when "TwoStepSpeed 0/1" = 1. This fault indicates illegal configuration of the position sensor for the two step speed profile operation. Can NOT operate the two step speed profile operation. Only Low speed operation.
		NOTE : Initially, the car has to run from BOTTOM to TOP to detect the installation position of the position sensor for two step speed profile operation. Before this initial operation is finished, the "410 Low Speed" cannot clear and will only operate the low speed.
411 Brk S1 DECEL	D4	Applicable only for "JIS Function 0/1" = 1 See: 400 Brake S1 SAS, 401 Brake S2 SAS, 408 Brk S1 ESTOP 409, Brk S2 ESTOP
412 Brk S2 DECEL	D4	Applicable only for "JIS Function 0/1" = 1 See: 400 Brake S1 SAS, 401 Brake S2 SAS, 408 Brk S1 ESTOP 409, Brk S2 ESTOP
413 Bk Desat Err	E4	Applicable only for "Drive Type" = 234, 428 or 460 The brake current exceeded a preset level, detected via hardware.
414 Bk Bus Over	Ι	Applicable only for "Drive Type" = 234, 428 or 460
415 Bk Bus Under	1	The brake bus exceeded threshold data. Applicable only for "Drive Type" = 234, 428 or 460
		The brake bus fell below threshold data.
416 Bk fbk tmout	E4	Applicable only for "Drive Type" = 234, 428 or 460 The brake pick current did not exceed threshold data of Brake Pick state.
417 Bk SW Oct	E4	Applicable only for "Drive Type" = 234, 428 or 460
		The magnitude of the brake current exceeded an allowed threshold.
418 Bk lft tmout	-	Applicable only to Ultra drive.
419 Bk drp tmout	-	Applicable only to Ultra drive.
420 Bk Dly DetW	W	Applicable only for "JIS Function 0/1" = 1
1		This is for Brake Delay Detection. This is detected If it passed specific
		time from LB to "Brake picked".
		Or it detects when BS is OFF during running.
421 Bk Dly DecE	S	Applicable only for "JIS Function 0/1" = 1
		This is for Brake Delay Detection. This is detected If it passed specific
		time from LB to "Brake picked".
		Or it detects when BS is OFF during running, then the running is
		completed.
		But can not do further run until POR or Block Clear.
422 Brk ShrtCrkt		Reserved for Low Voltage Drive.

423 Brk I State	E4	Applicable only if "Int Brk Type 0-4" is set to 1 or 2. Brake current was detected just before the lift brake command. Double check brake wiring to make sure that brake is not energized at the prepare to run command and before the lift brake command.
424 Brake I Neg	E4	Applicable only if "Int Brk Type 0-4" is set to 2. Negative brake current has been detected. Double check any brake current hardware connections and brake power supply connections to see if they are correct. If all connections are correct, then the brake current sense hardware may be damaged.
425 Hyd Pump Flt	С	This is for Hydraulic pump unit of 78T machine. The HPU has some failure.
426 BTI NG LOCK	ER S	Applicable only for Interface Type 1 and only if "Self BTI Block " is set to 0 and "Lockup by S-BTI " is set 1. This event is detected by the NG failure of Self-BTI with "BRK TRQ %Load2" condition or "030 MotorRun Err". And then it sets the "BTI Block" with drive shutdown, and then any attempt run is prohibited. After the ERO/TCI switch is turned ON/OFF 3 times, the inspection run is enabled for rescue operation. The "BTI Block" is canceled only for good result of Manual BTI test or special command required.
427 Chk Man BTI	W	This event is detected by the NG failure of Self-BTI with "BRK TRQ %Load1" condition. The brake torque should be verified by Manual BTI again.
428 Brk S3 DECEL 429 Brk S4 DECEL 430 Brk S5 DECEL	D4	Applicable only for GDCB2 Drives As 411 Brk S1 DECEL but for brake switches 3,4,5. Note: With Brk Sw Type 0-6 not set to 7, this fault may occur if the unused BS input is not wired to GND.
431 Brk S3 ESTOP 432 Brk S4 ESTOP 433 Brk S5 ESTOP	E4	Applicable only for GDCB2 Drives As 408 Brk S1 ESTOP but for brake switches 3,4,5. Note: With Brk Sw Type 0-6 not set to 7, this fault may occur if the unused BS input is not wired to GND.
434 Brake S3 SAS 435 Brake S4 SAS 436 Brake S5 SAS	C4	Applicable only for GDCB2 Drives As 400 Brake S1 SAS but for brake switches 3,4,5. Note: With Brk Sw Type 0-6 not set to 7, this fault may occur if the unused BS input is not wired to GND.
437 Bk UCM Relay	E1	Applicable only to 430ML drive
438 Brk Cur Undr		RESERVED

6.4.15 Motion Faults

SVT Display		Description
500 Overspeed	E4	The motor speed has exceeded a speed threshold. The speed threshold
		is determined by the operating mode of the drive:
		MCSS mode: adjustable perecentage of Duty Speed mm/s
		Manual Mode: adjustable percentage of Man Speed mm/s
		CAN Normal: 110% of Duty Speed mm/s
		CAN Relevel: fixed percentage of max relevel = 20 mm/sec
		CAN Learn: fixed percentage of max learn = 500 mm/sec
		CAN ERO/TCI: fixed percentage of Insp Speed mm/s
		CAN Rescue: fixed percentage of max rescue = 300 mm/sec
		For MCSS and manual modes, the percentage is adjusted by SVT
		parameters: MCSS Overspeed % and MAN Overspeed %.

501 Pos Tracking	E4	The position tracking error exceeded a threshold and indicates that the position feedback was not tracking the position reference from the profile generator. This fault is checked only when the drive uses its internal profile generator. See EEPROM parameter: Pos Err Lim mm
502 Vel Tracking	E4	 The velocity tracking error exceeded a threshold. The velocity feedback was not tracking the velocity reference. <u>Possible Causes & Solutions</u> Incorrect motor phasing → change parameter Motor Phase 0/1. Wrong encoder feedback → check encoder wiring and attachment. Incorrect parameter value → verify correct value of Inertia kg-m2. Excessive start jerk / improper pre-torque → verify load weigh device; if no load weigh device present (as during inspection), try increasing parameter Start Gain Ot PU. See section 4.11 for further instruction. Brake not lifting → check brake wiring & brake power supply. Hoistway obstructed → check for obstruction (e.g. car or counterweight on buffer). The fault threshold can be adjusted by parameter Track Error mm/s.
		When Manual Mode is active, this fault threshold is automatically increased by a factor of 3.
503 LRT Motion	E4	This fault indicates motion was detected while performing the Locked Rotor Test. The Locked Rotor Test is performed at the beginning of the first run after a power-up to determine the position of the magnets when using a PM motor. The threshold for the fault is specified by the parameter LRT mot err eDeg. If the fault occurs, the brake may not be set properly. When this fault continued 6 times without a success LRT, the drive state moves to shutdown state. This shutdown is cleared by "CLEAR BLOCK 2-4".
504 Enc Pos Err	W	This fault indicates that the drive has lost track of the magnet position when using a PM motor. This fault is necessary to prevent a loss of torque production. This fault may be caused by the encoder physically slipping with respect to the motor, or by a bad magnet position calculation during the locked rotor test (LRT). This fault is detected by comparing the magnet position, derived from the encoder and the result of the LRT, to the estimated magnet position based on the back-EMF of the motor. Since the estimator is back-EMF based, the fault detection is enabled only when the motor operates above 30% of the rated motor speed. The default threshold for the fault
505 SPARE	D	is 20 electrical degrees. Another locked rotor test will be performed at the beginning of the next run to automatically re-determine the magnet position. See EEPROM parameter: Mag err thr eDeg See EEPROM parameter: Rated Motor rpm See display parameter: MagErr1 MagErr2 Not used.
506 Stopping Err	Ŵ	A time-out occurred because the stopping criteria at the end of the run
	vv	were not satisfied. See EEPROM parameters: Pos Stop Tol mm and Vel Stop mm/sec. Maskable via parameters "MaskOut Warning1" and 2.

	1	
507 Pos at 1LS	NC	Applicable only for Interface Type 1.
		Unexpected position at 1LS. The 1LS transition occurred at a position
		outside the expected range for 1LS, or the 1LS signal state is not
		consistent with hoistway position. Applicable only when landing table is
		valid and position is valid.
508 Pos at 2LS	NC	Applicable only for Interface Type 1.
		Unexpected position at 2LS. The 2LS transition occurred at a position
		outside the expected range for 2LS, or the 2LS signal state is not
		consistent with hoistway position. Applicable only when landing table is
		valid and position is valid.
509 Floor at 1LS	NC	Applicable only for Interface Type 1.
509 F1001 at 115	NC	
		Unexpected floor at 1LS. The 1LS transition occurred at a floor that is
		different from the expected floor. Applicable only when landing table is
		valid and limit switch signals are valid.
510 Floor at 2LS	NC	Applicable only for Interface Type 1.
		Unexpected floor at 2LS. The 2LS transition occurred at a floor that is
		different from the expected floor. Applicable only when landing table is
		valid and limit switch signals are valid.
511 1LS & 2LS !	NC	Applicable only for Interface Type 1.
		Both LS signals are valid and active simultaneously.
		This fault is used to decide if the NEXT COMMITTABLE fault response
		shall continue. If this fault is not detected with a certain time, or the fault
		"906 No LS Msg" is not detected within a certain time, then the fault
		response is changed from NEXT COMMITTABLE to TIMED DECEL.
		If this fault persists at the end of a run, the drive will transition to (state,
		substate) = (IDLE AVAILABLE, RescueOnly). When the drive is in this
		substate, only commands for Rescue, ERO, ARO and MRO runs are
E10 Mi 1	NOC	accepted and LS are subsequently ignored.
512 Missing Vane	NC3	Applicable only for Interface Type 1.
		Expected vane is missing. Logged only when outside a vane and an
		expected transition onto a vane has not occurred. Not checked in
		Inspection or Correction runs.
513 No PRS Trans	NC3	Applicable only for Interface Type 1.
		Expected transition is missing. Logged only when on a vane and an
		expected transition has not occurred. Not checked in Inspection or
		Correction runs.
514 Enc <> Vane	NC3	Applicable only for Interface Type 1.
		An unexpected vane transition occurred. Possible causes could be:
		1. Incorrect Car Dir 0/1 setting.
		2. Wrong Vane Sensor Type parameter setting.
		3. PRS sensor signal wiring mistake.
		4. PRS is having false transitions.
		5. Encoder is not firmly attached to rotor.
		6. Magnet has moved since it was learned during the learn run.
		7. Belts are slipping or creeping over the drive sheave excessively.
		8. Belts are stretching excessvely.

515 NTSD failed	W	Applicable only for Interface Type 1. During a normal run, the normal stopping profile did not decelerate the car in time to meet the target. The timed-decel is two-phased, containing a creep region. Only triggered at the terminal landings. The condition for triggering the fault is that the normal profile overshoots the target compared to a linear ramp-down of the speed at 110% of normal decel rate. Only triggered above a certain speed (presently 0.1 m/s).
516 Corr failed	D	Applicable only for Interface Type 1. A correction run missed the target. This fault is triggered when a correction run terminates outside of the limit switches or outside a vane, or at a different landing other than the terminal landing. The fault is logged after the car has stopped. Note: There is a minor bug with the SVT display for this fault. The fault response in the SVT is shown as ESTOP, when it is actually DECEL.
517 DDP Error	E1	 Applicable only for Interface Type 1. Delayed Drive Protection (DDP) fault. The time between vanes has exceeded a specified value. It is not checked during ERO or TCI runs. The fault is cleared by any of the following: ERO run TCI run SVT M2-4 "CLEAR BLOCK" The fault is <u>not</u> cleared by POR. The drive will stay in IDLE and accept only TCI and ERO commands. The time between vanes is specified by the EEPROM parameter: DDP sec.
518 BeltCmp Wrng	W	Applicable only for Interface Type 1. This indicates that the compensation factors for belt and traveling cable imbalance determined during the learn run were exceptionally large (specifically, the offset factor was greater than 25% rated torque). The compensation factors can be viewed in the SVT display: BeltCmp:Slp mA/m, BeltCmp:Offset A.
519 RlvPermitErr	W	Applicable only when Interface Type is 1 and Load Weigh Type is 1. Controller has given permissive to relevel while load weighing system indicates overload condition. This contradictory situation has persisted for >200ms.
520 Rllbck Start	W	Applicable only for Interface Type 1. Rollback of more than 5.0 mm at beginning of run. Maskable via parameters "MaskOut Warning1" and 2.
521 Rllbck Stop	W	Applicable only for Interface Type 1. Rollback (reverse to direction of run) or overshoot (in direction of run) of more than 5.0 mm at ending of run. Maskable via parameters "MaskOut Warning1" and 2.
522 ManualRescue	D	Applicable only for Interface Type 1. SPBC message reports that the car has been moved for manual rescue (drive powered off, SPBC lifts brake). The drive's stored position is invalidated and a locked rotor test initiated before the next run.
523 Moved at POF	W	Applicable only for Interface Type 1. The SPBC or GECB and the drive have contradictory position information (at power up): the SPBC's or GECB's position has been assumed by the drive.

524 No Enc Ciarl		Applicable only when The solen Three 0/1 is get to 0 (incremental
524 No Enc Signl	Е	Applicable only when Encoder Type 0/1 is set to 0 (incremental, double onded)
		double-ended).
		Encoder channel A input is not detected. Encoder may not be connected,
		encoder power supply may have failed, or encoder may have failed.
525 NoRlv SpdChk	D ¹	This fault sets the SAS flag.
-	D^1	Relevel speed is too high (>= 0.285 m/s).
526 NoRlv TooMny	D'	This event indicates the drive attempted 20 consecutive relevel runs
		without the start of a normal run. If hovering is enabled, then the threshold is 40 consecutive relevel runs.
		After 20 (or 40 if hovering) relevel attempts, further relevel runs are
		prohibited until after the start of a normal run (or TCI/ERO, Correction,
		Rescue, Learn Runs).
527 NoRlv LostDZ	D ¹	Lost DZ signal or detecting UIS/DIS signal disagreeing with mm-position
	U	(on opposite side of target mm-position).
528 Profile Err	W	The profile chosen is not compatible with the system environment:
		A) The LS1 or LS2 lengths (learned during learn run) are too short for
		the drive to be able to stop within. This can be caused by too large
		speeds in the profile setting or too small deceleration entered. The
		other possibility would be a really short LS magnet. Cause A can be
		identified in the vane monitor M-1-7 by comparing measured LS to
		minimum required.
		B) The Nom Speed is set too high for the LS signal latency reported by
		the ICD of the GECB/TCBC (e.g. Nom Speed > 1.8m/s with TCBC).
		This setting could lead to CORR runs not reaching the target vane.
		This condition also depends on Vane Sensor Type.
529 No enc fdbck	E4	This fault indicates that the motor started moving without an encoder.
		This fault is triggered when the motor voltage exceeds a certain
		threshold defined by No Enc VThrs PU while the encoder speed
		feedback is below 1mm/s. Check the integrity of the encoder. Also,
		check motor parameters.
530 No enc tmout	E4	This fault indicates that the drive started commanding velocity profile and
		the motor speed feedback did not exceed 1mm/s for the time duration
		defined by the parameter No enc flt t sec (default value of the parameter
		is 0.4 secs). This fault detection is not active in Manual Mode.
		Possible Causes & Solutions
		• No encoder feedback signal \rightarrow check encoder wiring and
		mechanical attachment to the sheave.
		• Incorrect parameter value \rightarrow verify correct value of Inertia kg-m2,
		Man Acc mm/s2, Accel mm/s2, or any of the acceleration
		parameters in the (L)MCSS if operating in 422 mode.
		• Excessive start jerk / improper pre-torque \rightarrow verify load weigh
		device; if no load weigh device present (as during inspection), try
		increasing parameter Start Gain Ot PU. See section 4.11 for further
		instruction.
		• Brake not lifting \rightarrow check brake wiring & brake power supply.
		• Hoistway obstructed \rightarrow check for obstruction (e.g. car or
		counterweight on buffer).
		The fault threshold can be adjusted by parameter No enc flt t sec
531 PRS Sigs 1LS	NC	Applicable only for Interface Type 1.
		The transition into 1LS occurred with PRS signals that are not expected
		near the learned LS transition point. Applicable only when landing table
		is valid and limit switch signals are valid.

532 PRS Sigs 2LS	NC	Applicable only for Interface Type 1. The transition into 2LS occurred with PRS signals that are not expected near the learned LS transition point. Applicable only when landing table is valid and limit switch signals are valid.
533 ARO Overspd	E	Applicable only when Interface Type = 2 or 3. Applicable only when "ARO Type" = 2 (Interruptable ARO). This fault is declared when the motor speed has exceeded a speed threshold set by the parameter ARO Overspeed % as a percentage of ARO Speed mm/s. This fault is disabled with ARO Overspeed % =0. If this fault is logged, the run is immediately terminated by the drive.
534 ABL Abort:LW	ER	Applicable only for Interface Type 1. A command for advanced brake lift was received and ignored because no valid load data was available.
535 Timeout PTR	ERS	Applicable only for Interface Type 1. While in state "Prepare To Run" (during Advanced Brake Lift), the drive did not receive a command to leave this state and timed out after 60s.
536 Timeout LB	ERS	Applicable only for Interface Type 1. While in state "Lift Brake" (during Advanced Brake Lift), the drive did not receive a command to leave this state and timed out after 16s.
537 No EndRunCmd	ERS	Applicable only for Interface Type 1. While waiting for a DriveCommand EndRun in substate "STOPPED" the drive did not receive this command and timed out after 3s
538 Abort:EndRun	ER	Applicable only for Interface Type 1. The run has been terminated with normally profiled deceleration by an OPB command (DriveCommand EndRun)
539 LvTransUnclr	NC3	Applicable only for Interface Type 1. With a single-sensor PRS, an ambiguous sensor transition has been detected, could have been either one of two vane edges. Potential root cause: Uncertain mm-position (ESTOP sliding, Power Up recovery from GECB/SPBC, position recovery in LS) and transition occurs within first 5mm of travel.
540 Shock Detect	W	The shock condition was detected for REI/REM and EAR. The following parameters define the thresholds for the fault detection: Start Shock LVL% Stop Shock LVL%
541 SinCos Warng	W	 This fault will be logged for one of the following conditions: When using a CEIB and sin/cos encoder A. If any of the analog encoder signals fail when using the CEIB, then this fault will be logged. Check the CEIB P2 connector to the GDCB P10 connector connection. B. If the Encoder Type 0/1 SVT parameter has the wrong setting of "0", then this fault will be logged. When using an incremental encoder without a CEIB If the Encoder Type 0/1 SVT parameter has the wrong setting of "1", then this fault will be logged.
542 Decel Req Fl	D	Applicable to Interface Type = 3 only. A fault occurred and a timed decel is required, so a falsg is sent to the controller to request a timed-decel
543 SSOoverSpeed	E4	Reserved

544 Torq Obs Flt	E3	This fault indicates that the torque observer error was above the fault threshold specified by the parameter: Torg Obs Err %. The fault indicates that the atual troque feedback diverged from the expected torque and may indicate there is an obstruction in the hoistway or that belts/ropes friction is less than expected.
545 Car Pos Err	E	 Applicable to "AHC Enable 0/1"= 1 only If the difference between the machine encoder and the top car encoder is greater than 200 mm for a single hovering/relevel run, then this fault occurs and ends the run immediately. If this fault occurs 4 consecutive times, then Advanced Hovering Control is disabled, and all subsequent hovering/relevel runs will use the machine encoder instead of the top of car encoder. If this fault occurs: Check that the top of car board has power Check that the top of car encoder is wired and connected correctly Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly If a hovering/relevel run executes without this fault and other related AHC faults, then the AHC fault counter decrements. See "546 Car Vel Err", "549 AHC Enc/Vane", "AHC fault count", and "AHC Permissive"
546 Car Vel Err	E	 Applicable to "AHC Enable 0/1"= 1 only If the velocity from the top car encoder is greater than 1000 mm/s for a single hovering/relevel run, then this fault occurs and ends the run immediately. If this fault occurs 4 consecutive times, then Advanced Hovering Control is disabled, and all subsequent hovering/relevel runs will use the machine encoder instead of the top of car encoder. If this fault occurs: Check that the top of car board has power Check that the top of car encoder is wired and connected correctly Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly If a hovering/relevel run executes without this fault and other related AHC faults, then the AHC fault counter decrements. See "545 Car Pos Err", "549 AHC Enc/Vane", "AHC fault count", and "AHC Permissive"

547 CarEncErr NR W Applicable to "AHC Enable 0/1"= 1 only For a Normal Run, if the difference between the machine encoder and the top of car encoder exceeds a threshold as defined by the "AHC Nm Enc Th mm" parameter setting, then this warning is logged and the "AHC Termissive" is removed (set to 0). The "AHC Permissive" is not restored until another Normal Run is performed with an encoder difference that is below this warning threshold. If this warning occurs: • Check the "TOC Car Dir 0/1" parameter setting • Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed 548 CarEncErr LR W For a Learn RUn, if the difference between the machine encoder and the top of car encoder exceeds a threshold as defined by the "AHC In Enco Th mm" parameter setting, then this warning longed, and the "AHC In Enco Th mm" parameter setting, then this warning longed, and the "AHC In Enco Th mm" parameter setting in the solid If this warning occurs: • Check that the top of car encoder is wired and connected correctly • Check that the top of car encoder is wired and connected into is bole with warning in the solid. If this warning cours: • Check that the top of car encoder is wired and connected correctly • Check that the top of car encoder is wired and connected correct with the mechanical integrity of the top of car encoder is wired and connected correctly 549 AHC Enc/Vame D Applicable to "AHC Enable 0/1"= 1 only During a hove/rielevel run, if the amount of car motion as detected by the top of car encoder is wired and connected correctly • Check that the to			
top of car encoder exceeds a threshold as defined by the "AHC In Enc Th mm" parameter setting, then this warning is logged, and the "AHC Permissive" is removed (set to 0). The "AHC Permissive" is not restored until another Learn Run is performed with an encoder difference that is below this warning threshold. If this warning occurs: Check that the top of car board has power Check that the top of car board has power Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly549 AHC Enc/VaneDApplicable to "AHC Enable 0/1"= 1 only During a hover/relevel run, if the amount of car motion as detected by the top of car encoder is stand or equal to the value as defined by the "AHC Enc/Vn Th mm" parameter setting when the car moves away from the "center vane" position, then this fault is declared. If this fault occurs 4 consecutive times, then Advanced Hovering Control is disabled, and all subsequent hovering/relevel runs will use the machine encoder instead of the top of car encoder is wired and connected correctly <th></th> <th></th> <th> For a Normal Run, if the difference between the machine encoder and the top of car encoder exceeds a threshold as defined by the "AHC Nm Enc Th mm" parameter setting, then this warning is logged, and the "AHC Permissive" is removed (set to 0). The "AHC Permissive" is not restored until another Normal Run is performed with an encoder difference that is below this warning threshold. If this warning occurs: Check the "TOC Car Dir 0/1" parameter setting Check that the top of car board has power Check that the top of car encoder is wired and connected correctly Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly </th>			 For a Normal Run, if the difference between the machine encoder and the top of car encoder exceeds a threshold as defined by the "AHC Nm Enc Th mm" parameter setting, then this warning is logged, and the "AHC Permissive" is removed (set to 0). The "AHC Permissive" is not restored until another Normal Run is performed with an encoder difference that is below this warning threshold. If this warning occurs: Check the "TOC Car Dir 0/1" parameter setting Check that the top of car board has power Check that the top of car encoder is wired and connected correctly Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly
549 AHC Enc/Vane D Applicable to "AHC Enable 0/1"= 1 only During a hover/relevel run, if the amount of car motion as detected by the top of car encoder is less than or equal to the value as defined by the "AHC Enc/Vn Th mm" parameter setting when the car moves away from the "center vane" position, then this fault is declared. If this fault occurs 4 consecutive times, then Advanced Hovering Control is disabled, and all subsequent hovering/relevel runs will use the machine encoder instead of the top of car encoder. If this fault occurs: Check that the top of car encoder is wired and connected correctly Check that the top of car board has power Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly If a hovering/relevel run executes without this fault and other related AHC faults, then the AHC fault countr decrements. See "545 Car Pos Err", "546 Car Vel Err", "AHC fault count", and "AHC Permissive" 550 Crp Time Low Reserved 551 CrpSpe Boost Reserved 553 DZ at Decel Reserved	548 CarEncErr LR	vv	 top of car encoder exceeds a threshold as defined by the "AHC Ln Enc Th mm" parameter setting, then this warning is logged, and the "AHC Permissive" is removed (set to 0). The "AHC Permissive" is not restored until another Learn Run is performed with an encoder difference that is below this warning threshold. If this warning occurs: Check the "TOC Car Dir 0/1" parameter setting Check that the top of car board has power Check that the top of car encoder is wired and connected correctly Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide
551 CrpSpe Boost Reserved 552 CrpSpe inval Reserved 553 DZ at Decel Reserved	549 AHC Enc/Vane	D	 Applicable to "AHC Enable 0/1"= 1 only During a hover/relevel run, if the amount of car motion as detected by the top of car encoder is less than or equal to the value as defined by the "AHC Enc/Vn Th mm" parameter setting when the car moves away from the "center vane" position, then this fault is declared. If this fault occurs 4 consecutive times, then Advanced Hovering Control is disabled, and all subsequent hovering/relevel runs will use the machine encoder instead of the top of car encoder. If this fault occurs: Check that the top of car board has power Check that the top of car board has the correct settings for the top of car encoder ppr, rated rpm, and contract duty speed Check the mechanical integrity of the top of car encoder and roller guide assembly If a hovering/relevel run executes without this fault and other related AHC faults, then the AHC fault count", "AHC fault count", and "AHC
551 CrpSpe Boost Reserved 552 CrpSpe inval Reserved 553 DZ at Decel Reserved	550 Crn Time Leve		
552 CrpSpe inval Reserved 553 DZ at Decel Reserved	=		
553 DZ at Decel Reserved			
554 DZ lost Stop W Reserved			
	554 DZ lost Stop	W	Reserved

555 DZ too late	W	Reserved
556 APRS step	E4	Applicable only for Interface Type 1 and Vane Sensor Type 88. An APRS position message has deviated >20mm from the encoder position.
557 130% Mtr Frq	W4	This fault indicates that the machine electrical frequency exceeds the 130% margin of the maximum motor frequency. A fault which results in drive shutdown if the two SVT parameters "Rated rpm" (menu 4-3-1) and "Number of Poles" result in a frequency greater than 30% of maximum Otis machine rated frequency. = 150 Hz *1.3 = 195 Hz
558 150% Mtr Frq	E4	This fault indicates that the machine electrical frequency exceeds the 150% margin of the maximum motor frequency. A fault which results in ESTOP if the dictated speed results in a frequency greater than 50% of maximum Otis machine rated frequency. = 150 Hz *1.5 = 225 Hz
559 Enc Nois Flt	W	RESERVED
560 APB Detected	W	Applicable only for Interface Type 0, 2, 3, and 4. Abnormal passenger behavior was detected and APBD bit sent to MCSS to lower contract speed dynamically. The following parameters define the thresholds for the fault detection: APB Detect LVL % APB Detect tim s

1) This Timed Deceleration reaction does not lead to the SHUTDOWN state

6.4.16 Temperature Faults

SVT Display		Description
600 Inv Tmp Warn	W	The temperature of the inverter heat sink has exceeded 80C.
601 Inv Tmp Over	C ¹	The temperature of the inverter heat sink has exceeded 85C. The fault detection includes hysteresis, and will not clear until the temperature of the heat sink drops 5C below fault value.
602 Inv Tmp Fail	C ¹	Indicates the analog temperature sensor on the inverter heat sink is not connected or has failed. The fan will turn on and remain on when this condition is detected.
603 Cnv Tmp Warn	W	The temperature of the converter heat sink has exceeded 80C.
604 Cnv Tmp Over	C ¹	The temperature of the converter heat sink has exceeded 85C. The fault detection includes hysteresis, and will not clear until the temperature of the heat sink drops 5C below fault value.
605 Cnv Tmp Fail	C ¹	Indicates the analog temperature sensor on the converter heat sink is not connected or has failed. The fan will turn on and remain on when this condition is detected.
606 Mtr Tmp Over	C ¹	The motor thermal contact has changed state indicating that either the motor is overheating or there is a problem with the contact circuitry. Check the motor temperature and the thermal contact. Although motor thermal contacts can be normally open or normally closed, the drive always expects a normally closed contact. If the thermal contact is normally open, a modification must be made to adapt it to the drive.
607 Reactor Temp	C ¹	The thermal switch in the line reactor has opened, indicating an over- temperature condition in the line reactor.
608 DBR Tmp Over	C ¹	Used only if parameters Interface Type = 1 and DBR Mode 0-3 > 0: Overheat switch of external smart DBR unit has released.
609 AC/DC Calibr	С	Applicable only when "Low Volt Op 0/1" is set to 1. A calibration was performed to ensure that the AC voltage sense and the DC voltage sense are consistant.

not
hase
ault would
o the
needs to be
ne fault
erature of
ik is not
nen this
ne fault
erature of
nk is not
nen this

1) When these temperature faults occur in 422 mode, PTR is not accepted until the fault condition clears. When these temperature faults occur in CAN mode, the drive behaves as follows:

1. Normal runs are re-routed to the next committable landing.

2. Inspection runs (TCI+ERO) are terminated by timed deceleration.

3. All other runs (ARO, CORR, Rescue, MRO, Relevel) are completed to their regular end

- 4. No new run is allowed until the condition clears.
- 5. The fan is turned on 100%.

6.4.17 State Faults

SVT Display		Description
700 Safety Chain	E/ W	 The safety chain is not present. The opening of the safety chain will cause SX relays to drop, causing the drive to de-energized the motor and brake, thus causing an ESTOP. For 422 system, the response is ESTOP For CAN system, the response is LOG ONLY Note: Due to switch timing variation, this event can be logged sporadically when switching from NORMAL to ERO/TCI (no problem in unit)
701 No Man Input	ш	This fault occurs if the drive is in manual mode and the manual mode jumper is removed.

702 Prechrg Time	W3	 This fault is declared when the DC bus fails to reach the charge voltage threshold within a time limit. The time limit is: 2.2 seconds for 60A V.2 drives, 4.4 seconds for 120A V.2 drives, 6.6 seconds for 160A V.2 drives, 1.2 seconds for 20A/30A/40A V.2.1, 30A/40A V.2.2 drives, 10 seconds for other regen drives. The timer starts when the drive enters the precharge state. For MCSS systems, the drive enters the powerdown state and waits 2 minutes, and then attempts again. For the regen drive, further precharge attempts are made only if the AC line voltage is within specification. There is no limit on the number of precharge attempts. For CAN systems, the drive enters the powerdown state and waits 30 seconds, and then attempts again. For the regen drive, further precharge attempts are made only if the AC line voltage is within specification. There is a limit of 3 consequtive precharge timeouts after which the drive will be blocked. The voltage threshold is 80% of the actual rectified AC line voltage. <i>Note: There is a minor bug with the SVT display for this fault. The fault</i> recerved to a charge of the actual rectified AC line voltage.
703 S Rly Fault	E4	response in the SVT is shown as WARN, when it is actually ESTOP. The normally-open S1 contact was in the wrong state.
704 DBD Fault	E4	See SVT parameter SX Pick Time ms.
704 DBD Fault	⊏4	One or more of the normally-closed contacts of S1, S2, BY1 and BY2 were in the wrong state. Three attempts are allowed before the drive is blocked. See SVT parameter SX Pick Time ms.
705 E2 Invalid	E	The data in the EEPROM is set to values incompatible with the current SCN or new EEPROM parameters have not yet been set. The invalid or blank values must be corrected. Pressing SHIFT_ENTER tells which parameter is invalid and what menu it is located.
706 E2 Write Lim	W	The allowable number of writes to the EEPROM have been exceeded: Metric writes: 100,000 maximum Event writes: 1,000,000 maximum
707 ADC Offset	С	The ADC offset variance is greater than the 2.9% of the ADC full scale, or the ADC gain variance is greater than 6.5%. There may be a problem with the analog circuitry. The fault is checked only when drive state <= IDLE. This fault sets the SAS flag and sends the drive state to SHUTDOWN until the fault clears. See SVT parameter: ADC:gain% offset
708 Cmd to Abort	D	Applicable only for Interface Type 1. The run has been terminated with timed deceleration by an OPB command (DriveRunCommand dir=none). This fault does NOT result in SHUTDOWN.
709 PRS SigNoise	D	Applicable only for Interface Type 1. Too many PRS signal transitions have occurred over a fixed period of time.
710 UIB DIB Err	E	Applicable only for Interface Type 1. The UIB and DIB inputs were not consistent with the run command from TCBC-type controller. This fault sets the SAS flag.

711 DBD Shutdown	S	Three attempts were made to try to correct a relay in the wrong state (one or more of the normally-closed contacts of S1, S2, BY1 and BY2 were in the wrong state). The drive is blocked from further runs.
712 PostTrq Time	W	A log only fault is reported when the current is not ramped down to zero within a specified time.
713 Block by xxx	S	The drive has been blocked from further runs. This occurs after certain critical faults have been detected, indicated by "S" in this table, or when certain faults have exceeded an allowed number of occurrences, indicated in this table by the number that follows the fault response category. The blockage must be cleared following the guidelines in Section 6.4.3. This fault sets the SAS flag.
714 B_MODE Err	W	Applicable only when Interface Type = 2 or 3. This fault is logged when "B_MODE" was not detected in less than 200ms from the time when the drive received some fault of "201 Cnv ld Error/ 202 Cnv lq Error/208 Bus Cap Fail/305 PLL Unlock" or detected DC Bus voltage less than 650V.
715 ARO BatPower	D	Applicable only in CAN-architecture. The power drawn from the battery during an MRO/ARO run was too high, e.g. > 15A * 48V for 800ms.
716 Illegal Cmd	W	Applicable only for Interface Type 1 with systems using GECB where CarController ICD >= 10, see "CAN ICD type" in M-1-8 ENGINEERING. An unexpected command has been received in a state where it could not be executed. It was ignored. Note it is possible that a GECB command coincides with a state change in the drive making execution of that
		command impossible. In such a case, this warning does not indicate a problem with the system.
717 Triac Stuck	E	Maskable via parameters "MaskOut Warning1" and 2. Applicable only for Interface Type 1. This fault is logged if both triacs are disabled and safety chain feedback is in the active state. It is not checked during ARO(EN) runs.
718 PRS Config	С	 Applicable only for Interface Type 1. This fault indicates illegal configuration of the PRS. Causes (see M-3-2): "offset mm" for a sensor is outside "Vane Length mm" (<- Test Variable 2 = 1) no DZ configured, i.e. "LV1 config 0/1/2"=0 and "LV2 config 0/1/2"=0, (<- Test Variable 2 = 2) gap between 2 sensors configured <5mm or sequence of sensor positions violated. Required sequence UIS > LV1 > LV2 > DIS
719 OARO Blocked	Ι	The pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal runs are enabled. The controller will parse this code and request service via REM.
720 Welded BLV	Ι	The BLV contact is welded. This means that the drive will allow ARO runs and normal runs; however the drive will be unable to completely shut down power after an ARO run. This causes deep discharge of batteries if the power outage persists (shorter life time and unavailability of ARO) and it needs to be fixed. The controller will request service via REM.
721 PwmExistsFlt		Reserved for Ultra drive.
722 E2 Read CkSm		Reserved for Ultra drive.
723 UCM in Run	С	Applicable only for Interface Type 1 and UCM-EN on/off = 1. Indicates that the car has run out of the door zone with open doors! Note: This fault triggers a blockage which may only be cleared by authorized personnel after appropriate investigation of the UCM fault causing the blockage. It cannot be cleared by a power cycle, it can be cleared by an ERO run or by SVT.

724 UCM in Slide	С	Applicable only for Interface Type 1 and UCM-EN on/off = 1. Indicates that the car has slid out of the door zone with open doors after an ESTOP has aborted a run inside the DZ.
		Note: This fault triggers a blockage which may only be cleared by
		authorized personnel after appropriate investigation of the UCM fault
		causing the blockage. It cannot be cleared by a power cycle, it can be
	~	cleared by an ERO run or by SVT.
725 UCM BrkBlock	С	Applicable only for Interface Type 1.
		Indicates that the UCM-EN brake monitoring has detected a fault
		potentially compromising the ability of the brake to hold the car. Note: This fault triggers a blockage which may only be cleared by
		authorized personnel after appropriate investigation of the brake fault
		causing the blockage. It cannot be cleared by a power cycle, it can be
		cleared by an ERO run or by SVT.
726 Tmout SfcMsg	С	Applicable only for Interface Type 1 and UCM-EN on/off = 1.
720 INOUC SICHSG	C	Indicates a timeout of the communication of the SafetyChainSignals (used
		by UCM-EN) from the GECB. No further run will be started until the
		communication is re-established.
727 TOStp SfcMsg	D	Applicable only for Interface Type 1 and UCM-EN on/off = 1.
, <u>2</u> , 1000p 510110g		Indicates that a timeout according to 726 has caused the abortion of a run
		by timed deceleration. This reaction is shown if 726 Tmout SfcMsg
		occurs while the UCM monitoring is active (open door with DBP
		active).
728 Slack Rope	С	Applicable only when Load Weigh Type = 2 and for Interface Type =1.
	Ũ	This fault indicates some ropes have trouble or are out of the driving
		sheave. The drive checks load data from Hitch Load Sensor for each
		rope. If the load data is very low compared with Normal data, an event of
		728 Slack Rope is detected. Then the elevator is not able to run until
		serviced by engineer. Only the Inspection running is allowed for rescue
		operation even if the "Slack rope" is not solved.
		This function is enabled by the parameter Num LwSensorData.
729 SysTrip OCBT		Reserved for Low Voltage Drive.
730 S2 RlyFault		Reserved for Low Voltage Drive.
731 PX RlyFault	E4	Applicable to 430ML drive only.
732 MX RlyFault	E4	Applicable to 430ML drive only.
733 No Q4 Reset		RSERVED for ACD5
750 ARU Failure	I	ARO failed to operate. If the drive initiates OARO but the controller does
		not respond within a certain time, the drive aborts the OARO attempt,
		drops the Battery Low Voltage (BLV) relay. The drive attempts this 3
		tiems. If it fails after 3 attempts, the drive logs a "750 ARU Failure" and
		sends to the controller as an alert when normal power recovers.
		Check the battery voltage and make sure the batteries are not dead. Make
		sure the batteries are connected.
751 Dischrg Batt	I	A discharged battery condition is detected when the drive enters into an
		ARO mode and realizes that the voltage is lower than 45 volts for ARU R1
		and 90 volts for ARU R2. The response is not to execute ARO. This
		happens if the battery is over used and the drive expects that the charger
		will resume the voltage. No blockage is done.
		The batteries may have to be replaced.

charging phase of the ARU battery. The GDCB monitors the duty cyr, the Charger Status signal from the battery charger board after each 1 up. If the signal is missing (ARU1 and ARU2), or the duty cycle of thi signal is equal to 50% +/-1% over a 2 minute period (ARU2 only), the GDCB logs a "752 Bat Chrg FIt" and sends it to the controller as an a Check connections to the battery charger board. The battery charger board may have to be replaced. 760 Missing Batt I Reserved for OARO. 761 Batt Tmp Flt I This fault is reported if the battery temperature sensor. 762 Batt Flt I The battery charger discrete signal BAT-FAULT is ON. The bit is che during normal operation, and not checked during OARO. Fault indice battery is absent or over-voltage fault, or a charging fault has occurre If fault (ALARM): I) H OARO condition is commanded, OARO will activate. Self clearing fault. No notification sent if cleared. Charger remains connected. Normal Operation and OARO operation not effected. Not reported every run if time not elapsed) 763 Welded ARx The pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal rur enabled. An alarm is sent to the controller. 764 ARO Alarm CR The pilot Be to 430ML drive only. 765 IVD Prechrg Reserved for Low Voltage Drive. 771 Vintsup1yFIt E4 Applicable to 430ML drive only. 772 Prechrg Fail E2 Applicable to 640AV3 and 430ML drive only. 771 Vintsup1yFIt E4		
761 Batt Tmp Flt I This fault is reported if the battery temperature sensor is disconnected a high (or too low) temperature condition existed more than 5 minute Check the battery temperature sensor. 762 Batt Flt I The battery charger discrete signal BAT-FAULT is ON. The bit is che during normal operation, and not checked during OARO. Fault indice battery is absent or over-voltage fault, or a charging fault has occurre lif fault (ALARM): 1 If OARO condition is commanded, OARO will activate. 2) 2) Self clearing fault. No notification sent if cleared. 3) Charger remains connected. 4) Normal Operation and OARO operation not effected. 5) Not reported unless ON more than 5-10 minutes. 6) If remains active, will be re-reported 5-10 minutes after any reported, then optimized ARO functionality is blocked, but normal rur enabled. An alarm is sent to the controller. 763 Welded ARx I This event is sent to REM central via the controller to clear any alarm was created during the operation of ARU. 765 LVD Prechrg Reserved for Low Voltage Drive. 770 770 24VsupplyPlt E4 Applicable to 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2 Ap		charging phase of the ARU battery. The GDCB monitors the duty cycle of the Charger Status signal from the battery charger board after each powe up. If the signal is missing (ARU1 and ARU2), or the duty cycle of this signal is equal to 50% +/-1% over a 2 minute period (ARU2 only), the GDCB logs a "752 Bat Chrg Flt" and sends it to the controller as an alert. Check connections to the battery charger board. The battery charger board may have to be replaced.
a high (or too low) temperature condition existed more than 5 minute 762 Batt Flt I The battery temperature sensor. 762 Batt Flt I The battery charger discrete signal BAT-FAULT is ON. The bit is cheduring normal operation, and not checked during OARO. Fault indice battery is absent or over-voltage fault, or a charging fault has occurrent if fault (ALARM): 1) If OARO condition is commanded, OARO will activate. 2) Self clearing fault. No notification sent if cleared. 3) Charger remains connected. 4) Normal Operation and OARO operation not effected. 5) Not reported unless ON more than 5-10 minutes. 6) If remains active, will be re-reported 5-10 minutes after any remabled. An alarm is sent to the controller. 763 Welded ARx I The pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal rure enabled. An alarm is sent to the controller to clear any alarm was created during the operation of ARU. 763 LVD Prechrg Reserved for Low Voltage Drive. 770 24VsupplyFlt E4 4 Applicable to 430ML drive only. 771 VintSuplyFlt E4 4 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2	5	
762 Batt Flt I The battery charger discrete signal BAT-FAULT is ON. The bit is cheduring normal operation, and not checked during OARO. Fault indice battery is absent or over-voltage fault, or a charging fault has occurred If fault (ALARM): If OARO condition is commanded, OARO will activate. Self clearing fault. No notification sent if cleared. Charger remains connected. Normal Operation and OARO operation not effected. Not reported unless ON more than 5-10 minutes. If remains active, will be re-reported 5-10 minutes after any renabled. An alarm is sent to the controller. 763 Welded ARx The pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal rure enabled. An alarm is sent to the controller. 764 ARO Alarm CR This event is sent to REM central via the controller to clear any alarm was created during the operation of ARU. 770 24VsupplyFlt E4 Applicable to 430ML drive only. 771 VintSuplyFlt E4 Applicable to 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited. For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked. The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automati	761 Batt Tmp Flt	a high (or too low) temperature condition existed more than 5 minutes.
763 Welded ARxIThe pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal rur enabled. An alarm is sent to the controller.764 ARO Alarm CRIThis event is sent to REM central via the controller to clear any alarm was created during the operation of ARU.765 LVD PrechrgReserved for Low Voltage Drive.770 24VsupplyFltE4Applicable to 430ML drive only.771 VintSuplyFltE4Applicable to 60A V3 and 430ML drive only.772 Prechrg FailE2Applicable to 60A V3 and 430ML drive only.This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited.For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked.The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically aft 30 second wait. If the retry fails then the drive is to be Blocked.	762 Batt Flt	 during normal operation, and not checked during OARO. Fault indicates battery is absent or over-voltage fault, or a charging fault has occurred. If fault (ALARM): If OARO condition is commanded, OARO will activate. Self clearing fault. No notification sent if cleared. Charger remains connected. Normal Operation and OARO operation not effected. Not reported unless ON more than 5-10 minutes. If remains active, will be re-reported 5-10 minutes after any run.
764 ARO Alarm CRIThis event is sent to REM central via the controller to clear any alarm was created during the operation of ARU.765 LVD PrechrgReserved for Low Voltage Drive.770 24VsupplyFltE4Applicable to 430ML drive only.771 VintSuplyFltE4Applicable to 60A V3 and 430ML drive only.772 Prechrg FailE2Applicable to 60A V3 and 430ML drive only.This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited.For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked.The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically aft 30 second wait. If the retry fails then the drive is to be Blocked.	763 Welded ARx	The pilot AR relay for AR1/AR2 contacts is welded ON. If this fault is reported, then optimized ARO functionality is blocked, but normal runs are
765 LVD Prechrg Reserved for Low Voltage Drive. 770 24VsupplyFlt E4 Applicable to 430ML drive only. 771 VintSuplyFlt E4 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. 771 This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited. For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked. The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically aft 30 second wait. If the retry fails then the drive is to be Blocked.	764 ARO Alarm CR	This event is sent to REM central via the controller to clear any alarm that
770 24VsupplyFlt E4 Applicable to 430ML drive only. 771 VintSuplyFlt E4 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. 771 This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited. For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked. The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically aft 30 second wait. If the retry fails then the drive is to be Blocked.	765 LVD Prechrg	
771 VintSuplyFlt E4 Applicable to 430ML drive only. 772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited. For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked. The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically after 30 second wait. If the retry fails then the drive is to be Blocked.	770 24VsupplyFlt	
772 Prechrg Fail E2 Applicable to 60A V3 and 430ML drive only. This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is op circuited. For both MCSS and CAN systems, the drive shall declare this fault if DC bus does not charge to the defined voltage threshold within 2 sec from the moment PX relay is commanded to be picked. The first fault shall trigger the precharge sequence to stop immediate and this fault to be reported. One retry is attempted automatically after 30 second wait. If the retry fails then the drive is to be Blocked.		
and this fault to be reported. One retry is attempted automatically after 30 second wait. If the retry fails then the drive is to be Blocked.	772 Prechrg Fail	 This fault is declared when the DC bus voltage fails within the first 2 seconds of pre charge to increase sufficiently. This is indicating that either the DC bus is short circuited or that the Precharge circuit is open circuited. For both MCSS and CAN systems, the drive shall declare this fault if the DC bus does not charge to the defined voltage threshold within 2 seconds

0.4. To Task Overrun Faults			
SVT Display		Description	
800 1ms Task	S	The 1 ms task overran. Contact Enigineering.	
801 10ms Task	S	The 10 ms task overran. Contact Enigineering.	
802 40ms Task	S	The 40 ms task overran. Contact Enigineering.	
803 Cnv Task	S	The Converter task overran. Contact Enigineering.	
804 Inv Task	S	The Inverter task overran. Contact Enigineering.	
805 200ms Task	S	The 200ms Task Overran. Contact Enigineering.	
806 Illegal Pwm	E3	Applicable to 430ML drive only.	

6.4.18 Task Overrun Faults

6.4.19 Communication Faults

SVT Display		Description
900 MCSS Timeout	Е	Applicable only for Interface Type 0, 4.
		Valid MCSS communication has not been received for 80 msecs.
901 SVC Tool Err	W	Service tool communication error detected via the local service tool port.
		Maskable via parameters "MaskOut Warning1" and 2.
902 CAN Err	W	Applicable only for Interface Type 1.
		CAN communication error detected.
		Maskable via parameters "MaskOut Warning1" and 2.
903 E2 CommWrite	W	An error occurred when writing to the EEPROM device.
		Maskable via parameters "MaskOut Warning1" and 2.
904 LWSS Timeout	W	Applicable only for Interface Type 1 and Load Weigh Type is set to
		1 or 2. The drive has not received a loadweigh message within a certain
		time. The fault is cleared when a valid LW message is received.
		Maskable via parameters "MaskOut Warning1" and 2.
905 LWSS Bad Val	W	Applicable only for Interface Type 1 and Load Weigh Type is set to
		1 or 2. The drive received an erroneous value in the loadweigh message.
		Load Weigh Type = 1:
		The drive received the full scale value for load percent from the LWB2.
		The load percent value can be checked in the SVT menu of the LWB2.
		Load Weigh Type = 2:
		The drive received the full scale value for the hitch load measured in kg
		from the Hitch LW device. The value can be checked in the menu Monitor-
		Motion, it is the first value in the display "HitchLW: Empty: "
		The fault is cleared when a valid LW message is received.
		Maskable via parameters "MaskOut Warning1" and 2.
906 No LS Msg	NC	Applicable only for Interface Type 1. The drive has not received the
		DriveHoistwaySignal message for 3 seconds.
		This fault is used to decide if the NEXT COMMITTABLE fault response
		shall continue. If this fault is not detected with a certain time, or the fault
		"511 1LS & 2LS !" is not detected within a certain time, then the fault
		response is changed from NEXT COMMITTABLE to TIMED DECEL.
907 Primary CRC	W	The drive application performs a CRC of the primary loader and this value
_		does not match the value computed by the conversion utility.
908 Drive CRC	S	The drive application performs a CRC of the drive software and this value
	_	does not match the value computed by the conversion utility.
909 CAN BusOff	W	Applicable only for Interface Type 1, 4.
		The CAN controller of the drive has shut itself down due to a persistent
		communication problem on the CAN bus or CAN power failure (broken
		connection).
010	W	Applicable only for Interface Type 1.
910 CAN OPB Init	VV	Applicable only for inferface lybe 1

911 CAN TxQ Full	W	Applicable only for Interface Type 1, 4. Overflow in the transmit queue of the CAN port, messages have been lost.
912 No FloorInfo	W	Applicable only for Interface Type 1. Neither the SPBC nor the GECB
		have sent valid position in return to the request by the drive (timeout
		200ms after request for SPBC, 200ms after its StartUp message for
		GECB).
913 MCSS Warning	W	Applicable only for Interface Type 0.
		MCSS Communication error detected. It includes Checksum, Framing,
		Parity or invalid format.
914 Power E2 Err	S	Applicable only to drives with el2C EEPROM storage capability.
		The power section could not be identified because bad or undefined drive
		code data has been read from the EEPROM on power section board 1
		(PBX_INV, PBX_BIDI(I), HVIB, HVIB_II).
915 LWSS not cal	W	This check is only performed at power on. Applicable only when Interface Type = 1.
JIJ LWSS HOL CAL	vv	Applicable only when interface Type = 1. Applicable only when Load Weigh Type = 2.
		Hitch load weighing device not calibrated. The calibration is done during a
		learn run.
916 Power E2 Rng	S	Applicable only to drives with el2C EEPROM storage capability.
		This fault is logged if bad data in one of the power section EEPROMs
		have been detected:
		- calibration values are undefined or out of range for the specified
		drive type,
		- customized converter-related data (if defined) are out of range.
		This check is only performed at power on.
917 CPLD Ver Flt	E1	The CPLD version is not compatible with either the HVIB EERPROM or
		the GDCB EEPROM parameter setting. See the table below for erroneous
	F 4	combinations.
918 ARO Ver Flt	E1	This event indicates an incompatibility between the Primary Loader and the CPLD version in case of an optimized ARO system. The Primary
		Loader must be version AAA31013CAE or later and the CPLD must be
		version 9 or greater. This event occurs if either is not satisfied for an
		optimized ARO system.
919 Powrbrd miss	S	One or more required power section boards are missing (bad or no
		response from their EEPROM's).
		Note that at least one power board (e.g. HVIB) is required even for drives
		w/o el2C EEPROM storage capability. For 60A/120A/160A V.2 – drives
		three power boards are required.
		This check is only performed at power on.
920 Micro ChkSum		Reserved for Ultra Drive.
921 FPGA ChkSum 922 FLASH Warn		Reserved for Ultra Drive. Reserved for Ultra Drive.
922 FLASH Warn		Reserved for Oltra Drive. Maskable via parameters "MaskOut Warning1" and 2.
923 FPGA Warn		Reserved for Ultra Drive.
		Maskable via parameters "MaskOut Warning1" and 2.
924 Micro War		Reserved for Ultra Drive. Maskable via parameters "MaskOut Warning1" and 2.
925 No CAN-PRS	С	Requested PrsSignals CAN messages are not received. While the fault
		persists, only ERO and MRO runs are allowed.
926 CAN PRS Msg	W	A discontinuity in the CAN PrsSignals was detected; a message may have
		been lost.
007 00000000000000000000000000000000000		Maskable via parameters "MaskOut Warning1" and 2.
927 DSP2FPGA Wrn		Reserved for Ultra Drive.
928 DSP2FPGA Flt	1	Reserved for Ultra Drive.

929 UCMP Timeout	С	Applicable only when Interface Type = 1 and "JIS Function 0/1" = 1. This is disconnected with UCMP module or has a CAN communication fault with UCMP.	
		If you use the "JIS function" without UCMP module, "JIS Option Mode" is	
		set to "60" only for Rescue or any test.	
930 PRS TrnsSkip	W	A PRS signal transition was skipped.	
±		This fault could be logged if a CAN PrsSignals msg is lost or if one sensor	
		signal is delayed, sequence inverted.	
		Maskable via parameters "MaskOut Warning1" and 2.	
931 Micro VerFlt		Reserved for Ultra Drive.	
932 SBSB Fault	С	Applicable only when drive OVFR02A-412	
		If "Sequenced Brk0/1" = 1 or "Motor Type " = 511:	
		The signal sent to SBSB board via 24V I/O P6.6 is not identical with the	
		signal received from SBSB via 24V I/O P5.5: Either the SBSB is defect or	
		the communication between GDCB and SBSB is interrupted.	
933 PosTimeStamp	W	RESERVED	
		Applicable only for Interface Type 1.	
		The drive has received a position message (APRS or Vanes over CAN)	
		with a time stamp out of range. This could indicate e.g. that a node had	
		sent a message older than 1sec.	
934 APRS timeout	С	RESERVED	
		Applicable only for Interface Type 1 and Vane Sensor Type 88.	
		No valid APRS messages were received for >1sec.	
935 AHC comm flt	W	Applicable to "AHC Enable 0/1"= 1 only	
		This warning occurs when there is an issue with the 422 communication	
		between the AHC top of car board and the machine-room drive. If this	
		warning occurs, the "AHC Permissive" is removed (set to 0). The "AHC	
		Permissive" is not restored until 422 communications is re-established	
		and this warning clears. If this warning occurs:	
		 Check that the top of car board has power 	
		 Check the top of car board 422 transmit signal connections 	
		Check the machine room drive 422 receive signals	
936 FloorTabCnfl	D	RESERVED	
		Applicable only for Interface Type 1 and Vane Sensor Type 88.	
		External messages potentially overwrote floor table data that had	
	14/	internally been modified in a learn routine.	
937 FloorTabPubl	W	RESERVED	
		Applicable only for Interface Type 1 and Vane Sensor Type 88.	
	14/	Published floor table data was potentially inconsistent.	
938 FT TopBotBad	W	RESERVED	
		Applicable only for Interface Type 1 and Vane Sensor Type 88.	
		Top or bottom floor parameter in drive are different from the parameters in	
939 FT E2 writes	10/	the system floor table -> no NORMAL runs possible. RESERVED	
JUD FI EZ WITLES	W		
		Applicable only for Interface Type 1 and Vane Sensor Type 88. The rate of table writes to E2PROM has exceeded 100 per 10days, or the	
		total number of writes has exceeded 80000. => a new table is stored to E2	
		only after 10hours of stability.	
940 FT CRC bad	W	RESERVED	
	~~	Applicable only for Interface Type 1 and Vane Sensor Type 88.	
		The checksum of the floor table content does not match the expectation:	
		no NORMAL runs while condition persists.	
950 Tandem Warm		Reserved for Tandem drives	
951 Tandem Comm		Reserved for Tandem drives	
JOI IANACIII COMMI	1		

Sheet 107 of 213

952 Drv x Comm		Reserved for Tandem drives
953 Drv x Estop		Reserved for Tandem drives
954 Drv x SAS		Reserved for Tandem drives
955 Drv x Temp		Reserved for Tandem drives
956 Drv x Warn		Reserved for Tandem drives
957 Drv x Block		Reserved for Tandem drives
958 Drv x Limit		Reserved for Tandem drives
959 DisInfo Miss	W	Applicable only to ACD5 system This event is logged if drives does not receive a specific CAN message from controller that contains the status of discretes and safety faults. Drive will try to request this information from the controller periodically if the status and fault information is not received.
960 SF Write Lim	W	Applicable only to Ultra Drives The allowable number of writes to the Serial Flash have been exceeded: This limit is tracked as part of event log and parameter back up feature Limit is 100,000

CPLD Version	HVIB EEPROM Present	"Drive Type" SVT Parameter	Fault Response
128	0	234/416/428/460	No Fault
128	1	Х	917 CPLD Ver Flt
128	0	NOT 234/416/428/460	917 CPLD Ver Flt
NOT 128	0	Х	918 Powrbrd miss
NOT 128	1	416/428/460	917 CPLD Ver Flt
< 8 OR >128	Х	Х	917 CPLD Ver Flt

6.5 Central Failure Management

The CFM is supported by sending a

- CfmSystemEvent messages after the occurrence of every event.
- CfmSystemEventText message in case of a blockage.

The CFM messages support the "ALL Menu" The "ALL Menue" provides

- A common error logging of all subsystems.
- A possibility to clear all event logs together
- In case of a blockage the source and a text string are displayed
- If the blockage is clearable it can be cleared

6.5.1 Plug & See

In case of a blockage by any subsystem the servicetool may be plugged in. It displays the "All Menu" automatically with the

- Source (blinking in the first row)
- Text String (scrolling through the second row)
- If clearable, it can be cleared by "shift 5"

Every event with a defined number of retries may lead to a blockage. The following text messages are provided by the drive:

Event message	Retries allowed	Source	Text String
"100 Inv SW Oct "	4	DRIVE,	High inverter current detected by software
"101 Inv I Imbal "	4	DRIVE,	Asymmetric inverter current
"102 Inv Id Error"	4	DRIVE,	High inverter current (field) regulator
"103 Inv Iq Error"	4	DRIVE,	High inverter current (torque) regulator
"107 Inv Gate Flt"	4	DRIVE,	Inverter IGBT gate supply voltage fault
"108 Inv HW Oct "	4	DRIVE,	High inverter current detected by hardware
"109 Overload "	4	DRIVE,	Motor current overload
"111 No Id fdbk "	4	DRIVE,	Motor phase – no current (field)
"112 No Iq fdbk "	4	DRIVE,	Motor phase – no current (torque)
"113 Inv IPM Flt "	4	DRIVE,	Inverter intelligent power module fault
"114 Curr Ovrload"	4	DRIVE,	Current overload
"115 Brk Chop Err"	4	DRIVE,	Brake chop error
"116 Inv HW Ovt "	4	DRIVE,	High DC link voltage detected by hardware
"117 Inv Pfai Flt"	4	DRIVE,	Inverter PWM activity during IDLE
"118 Overload Dec"	4	DRIVE,	Motor current overload
			High current on OVF4xx drive detected by
"119 Desat Err "	4	DRIVE,	hardware
	_		SR1 relay of OVF4xx drive in the wrong state
"121 SR1 Err "	4	CONTACTOR,	during run
122 Inv DeSat	4	DRIVE	High current on inverter side detected by gate
			drive
123 CnvOverload	4	DRIVE	Converter Overload
"200 Cnv SW Oct "	4	DRIVE,	High converter current detected by software
"201 Cnv Id Error"	4	DRIVE,	High converter current (field) control error
"202 Cnv lq Error"	4	DRIVE,	High converter current (torque) control error
"205 Cnv Gate Flt"	4	DRIVE,	Converter IGBT gate supply voltage fault
"206 Cnv HW Oct "	4	DRIVE,	High converter current detected by hardware
"207 Cnv Gnd Flt "	1	DRIVE,	Converter ground fault
"208 Bus Cap Fail"	1	DRIVE,	High power loss – check DC link capacitor
"209 DC Link OCT "	1	DRIVE,	High DC link current
"210 Cnv IPM Flt "	4	DRIVE,	Converter intelligent power module fault
"211 Battry Chrgd"	4	DRIVE,	Battery charging during ARO
214 Cnv DeSat	4	DRIVE	High current on converter side detected by
			gate drive
"300 DC Bus Over "	3	DRIVE,	High DC link voltage OR battery over-voltage
"301 DC Bus Under"	6	DRIVE,	Low DC link voltage OR low battery voltage
"302 VAC Over "	0	DRIVE,	High AC line voltage
"303 VAC Under "	0	DRIVE,	Low AC line voltage
"304 VAC Imbal "	0	DRIVE,	AC line voltage imbalanced
"305 PLL Unlock "	0	DRIVE,	PLL on AC line frequency unlocked
"306 Single Phase"	1	CONTACTOR,	Wrong phase wiring in Single Phase mode
"308 Welded Mx/Px"	1	DRIVE,	DC link voltage not 0 – check for welded Mx or Px relay
"400 Brake S1 SAS"	4	BRAKE,	Brake switch BS1 fault
"401 Brake S2 SAS"	4	BRAKE,	Brake switch BS2 fault
"402 Brake Status"	4	BRAKE,	Brake status feedback disagrees with brake
			command
"403 Brake BY "	4	BRAKE,	BY energized before lift brake command
"404 Brake I Off "	4	BRAKE,	Brake current measurement fault – high offset
"405 Brake I Drop"	4	BRAKE,	High brake current during stop
"406 Brake I Hold"	4	BRAKE,	Low brake current during run

"407 Drobo L Morr"	4		
"407 Brake I Max "	4	BRAKE,	High brake current during run
"408 Brk S1 ESTOP"	4	BRAKE,	Brake switch BS1 fault – emergency stop
"409 Brk S2 ESTOP"	4	BRAKE,	Brake switch BS2 fault – emergency stop
"411 Brk S1 DECEL"	4	BRAKE,	Brake switch BS1 fault – Deceleration stop
"412 Brk S2 DECEL"	4	BRAKE,	Brake switch BS2 fault – Deceleration stop
"413 Bk Desat Err"	4	BRAKE,	Brake PWM: high current detected by hardware
"416 Bk fbk tmout"	4	BRAKE,	Brake pick or drop control timeout
"417 Bk SW Oct "	4	BRAKE,	Brake PWM: high current detected by software
"421 Bk Dly DecE"	1	BRAKE,	Brake pick or drop control timeout
421 BK Bly DecL 422 Brk ShrtCrkt	4	BRAKE	Brake short circuit detected
		DIVAIL	Brake current detected before lift brake
"423 Brk I State "	4	BRAKE	command
"424 Brake I Neg "	4	BRAKE	Negative brake current detected
"431 Brk S3 ESTOP"	4	BRAKE	Brake switch BS3 fault - emergency stop
"432 Brk S4 ESTOP"	4	BRAKE	Brake switch BS4 fault - emergency stop
"433 Brk S5 ESTOP"	4	BRAKE	Brake switch BS5 fault - emergency stop
"434 Brake S3 SAS"	4	BRAKE	Brake switch BS3 fault
"435 Brake S4 SAS"	4	BRAKE	Brake switch BS4 fault
"436 Brake S5 SAS"	4	BRAKE	Brake switch BS5 fault
"437 Bk UCM Relay"	4	BRAKE	Brake UCM Relay Drop and EBrake Fault
"500 Overspeed "	4	DRIVE ENCODER,	Motor overspeed
"501 Pos Tracking"	4	DRIVE ENCODER,	Position tracking error
"502 Vel Tracking"	4	DRIVE ENCODER,	Velocity tracking error
"503 LRT Motion "	4	BRAKE,	Motion detected while brake should be closed
"511 1LS & 2LS !"	0	POSITIONREF,	1LS & 2LS active
"512 Missing Vane"	3	POSITIONREF,	Low-to-high vane transition missing
"513 No PRS Trans"	3	POSITIONREF,	High-to-low vane transition missing
"514 Enc <> Vane "	3	POSITIONREF,	Unexpected low-to-high vane transition
"517 DDP Error "	1	DRIVE,	DDP – No vane transition within DDP time limit
"524 No Enc Signl"	0	DRIVE ENCODER,	Encoder channel A input not detected
"529 No enc fdbck"	4	DRIVE ENCODER,	No encoder feedback after motor started
			movement
"530 No enc tmout"	4	DRIVE ENCODER,	No encoder feedback within timeout
"539 LvTransUnclr"	3	POSITIONREF,	Unexpected LV transition
"542 Decel Req FI"	4	DRIVE,	Estop due to failed deceleration
"544 Torq Obs Flt"	3	DRIVE,	Torque Observer Fault
	4		Absolute PRS had discontinuity step vs.
556 APRS step		DRIVE	machine encoder
557 130% Mtr Frq	4	DRIVE ENCODER	SVT Param exceed 130% of Max Mtr Freq
	4		Speed Command exceed 150% of Max Mtr
558 150% Mtr Frq		DRIVE ENCODER	Freq
"601 Inv Tmp Over"	0	DRIVE,	Inverter over-temperature
"602 Inv Tmp Fail"	0	DRIVE,	Temperature sensor failed on inverter
"604 Cnv Tmp Over"	0	DRIVE,	Converter over-temperature
"605 Cnv Tmp Fail"	0	DRIVE,	Temperature sensor failed on converter
"606 Mtr Tmp Over"	0	DRIVE,	Motor over-temperature
"607 Reactor Temp"	0	DRIVE,	Line reactor over-temperature
"608 DBR Tmp Over"	0	DRIVE,	DBR over-temperature or parameter DBR
			Mode
611 MTC/RTC Flt	0	DRIVE	Over-temperature of motor, line reactor, or DBR
"612 Inv IGBT tmp"	4	DRIVE	Inverter IGBT junction temperature over safe op limit

Sheet 110 of 213

"614 HSI Tmp Over"	0	DRIVE,	Lower heatsink over-temperature
"615 HSI Tmp Fail" "617 HSu Tmp Over"	0	DRIVE, DRIVE,	Temperature sensor failed on lower heatsink Upper heatsink over-temperature
"618 HSu Tmp Fail"	0	DRIVE,	Temperature sensor failed on upper heatsink
"702 Prechrg Time"	3	DRIVE,	DC link not precharged within time limit
"703 S Rly Fault "	4	DRIVE,	S1 relay in the wrong state
"704 DBD Fault "	4	CONTACTOR,	DBD fault
"705 E2 Invalid "	0		
"707 ADC Offset "	0	DRIVE,	Drive parameter invalid ADC offset out of range
707 ADC Oliset	0	DRIVE,	
"710 UIB DIB Err "	0		UIB/DIB inputs not consistant with run commands
"711 DBD Shutdown"	1	DRIVE,	DBD fault
	-	CONTACTOR,	
"717 Triac Stuck "	0	DRIVE,	Unexpected 110VAC on safety chain output
"718 PRS Config " "721 PwmExistsFlt"	0 4	POSITIONREF,	Illegal configuration of PRS
721 PWMEXISTSFIT	4	DRIVE,	Inverter PWM status disagrees with safety chain input
"723 UCM in Run "	0	DRIVE,	UCM blockage: motor on & car left DZ with
			open door
"724 UCM in Slide"	0	DRIVE,	UCM blockage: brake dropped & car left DZ
			with open door
"725 UCM BrkBlock"	0	DRIVE,	UCM blockage: because of brake failure
"726 Tmout SfcMsg"	0	DRIVE,	Drive did not receive SafetyChainSignal CAN
			msg for UCM
"728 Slack Rope "	1	LOAD,	Low value of one Hitch Load Sensor indicates
-			Slack Rope
730 S2 RlyFault	4	DRIVE	S2 relay in the wrong state
731 PX RlyFault	4	DRIVE	PX relay in wrong state (cmd vs. fbk mismatch)
732 MX RlyFault	4	DRIVE	MX relay in wrong state (cmd vs. fbk
			mismatch)
770 24VsupplyFlt	4	DRIVE	24V drive voltage supply is missing or failed
771 VintSuplyFlt	4	DRIVE	Internal drive voltage supply is missing or
			failed
772 Prechrg Fail	2	DRIVE	PreCharge Fail
"800 1ms Task "	1	DRIVE,	Software 1ms task overrun
"801 10ms Task "	1	DRIVE,	Software 10ms task overrun
"802 40ms Task "	1	DRIVE,	Software 40ms task overrun
"803 Cnv Task "	1	DRIVE,	Software converter task overrun
"804 Inv Task "	1	DRIVE,	Software inverter task overrun
"805 200ms Task "	1	DRIVE,	Software 200ms task overrun
"908 Drive CRC"	1	DRIVE,	Software checksum fault
"914 Power E2 Err"	1	DRIVE,	Power section not identified – E2P data
			incorrect
"916 Power E2 Rng"	1	DRIVE,	Bad or missing calibration of Power section
"917 CPLD Ver Flt"	1	DRIVE,	CPLD version fault
"919 Powrbrd miss"	1	DRIVE,	Power section boards are missing or not
			responding
932 SBSB Fault	0	DRIVE	SBSB board fault or not connected
	0	DIGVE	Drive's top/bottom params disagree w/ system
938 FT TopBotBad	Ŭ	DRIVE	floor table
	0	51.112	Floor table calculated CRC disagrees with
940 FT CRC bad		DRIVE	received CRC
	1		

6.6 Service Tool Parameters

The following table shows all the service tool parameters with their default, minimum and maximum values, as well as the SVT access level. Where indicated, the default values should be used. If a default value is not specified, the parameter should be set according to the contract. Detailed descriptions for each are in the next section.

	NOL always				
31 CONTRACT	Min	Max	Default	Actual	Access Level
Interface Type	0	4	-		2
JIS Function	0	2	0		2
*Duty Type	1	9999			2
*Drive Type	15	9999	-		2
ARO Type	1	5	1		2
*ARO Release? 1/2	1	2	1		2
*ARD Operation	0	2	0		2
*ARO Delay Time s	1	600	30		2
*ARO Time Max min	3	60	5		2
*Bat Peak Curr A	3	80	45		2
*Motor Type	100	999	-		2
*Duty Speed mm/s	10	16000	-		2
*Rated rpm	1	5000	-		2
Inertia kg-m2	0.1	20000	-		2
*Encoder Type 0/1	0	1	-		2
*Enc termintn 1/2	1	2	2		2
*Encoder PPR	1000	10000	-		2
*Duty Load kg	10	16384	-		2
*AC Main Vrms	50	480	-		2
*Load Weigh Type	0	3	-		2
*Load Wgh Lvl 1 %	0	120	-		2
*Load Wgh Lvl 2 %	0	120	-		2
*Load Wgh Lvl 3 %	0	120	-		2
*Load Wgh Lvl 4 %	0	120	-		2
*Load Wgh Lvl 5 %	0	120	-		2
*Balance %	0	77	50		2
*Roping 14	1	4	-		2
*Vane Sensor Type	0	99	-		2
*PRS via CAN 0/1	0	1	0		2
*DDP sec	0	45	20		2
*ARD DDP sec	270	600	270		2
*Number of DZ	2	140	-		2
*Bottom DZ	0	20	0		2
*DZ in 1LS	0	20	1		2
*DZ in 2LS	0	20	1		2
*LS Pos Recov 0/1	0	1	0		2
*ARO Bus Nom DC V	40	210	180		2
*6LS-TYP 0/1	0	1	0		2
*6LS-TYP 0-2	0	2	0		2
*DBR Mode 0-3	0	3	0		2
*UCM-EN on/off	0	1	1		2
*TwoStepSpeed 0/1	0	1	0		2

(*)Note: Not always visible.

*DZ below 1DS	0	5	2		2
*DZ above 2DS	2	MAX LANDINGS	-		2
*SFC InWiring 0/1	0	1	0		2
*ERO type 0/1	0	1	0		2
*TCI Pos Limit	0	1	0		2
32 ADJUSTMENT	Min	Max	Default	Actual	Access
52 ADUUSIMENI	IVIIII	WIAX	Derault	Actual	Level
*JIS Option Mode	0	106	0		2
*StartShock LVL2%	10	150	60		2
*Run Shock LVL%	10	80	30		2
*EAR UP MtrI Arms	3	700	40		2
*EAR Inv Lmt Arms	5	700	40		2
*EAR Overload sec	1	6	2		2
*EAR mtr OVL Arms	3	300	24.0		2
*DBR ENE=1 DIS=0	0	1	0		2
Car Dir 0/1	0	1	0		2
*Motor Phase 0/1	0	1	0		2
*Single Phase 0-3	0	3	0		2
*AC SnglPh Main V	50	480	-		2
*Start Gain Ot PU	0.1	40	1		1
*Start filt BW PU	0.1	20	1		2
*Start Gain In PU	0.1	20	1		2
*SG Period sec	0.01	20	0.3		2
*SG Ramp Down sec	0.01	2	0.3		2
*End Gn Vel mm/s	0.01	16000	0.4		2
Norm Vel Resp PU	0.0	1.5	1		2
*Rele Vel resp PU	0.0	2.0	1		2
Pretorque Trim %	50	150	100		2
*Pretorque Trim2%	0	100	100		2
*Pretorg Mod 0/1	0	1	0		2
*Track Error mm/s	0	600	100		2
*No Enc VThrs PU	0	1.0	0.2		2
*No enc flt t sec	0	2.0	0.2		2
*Vel Notch1 Hz	0	500	0.4		2
*Vel Notch2 Hz	0	500	0		2
*Notch Band Hz	0	50	2		2
*VelRate div 03	0	3	0		2
*Cnv Custom 0/1	0	1	0		2
*Cnv Notch Hz	800	2500	1800		2
*Cnv crf Depth	0	30	10	1	2
*Cnv crf Width	0	2000	300		2
*Cnv BW PU	0.5	1.0	0.7		2
*Dc V BW Hz	1	100	50		2
*Cnv L mH	0.01	100	-		2
*Cnv Saturation A	0.01	1000	0		2
*Cnv L Slope uH/A	0	1000	0		2
*Cnv R Ohm	0.01	1000	-		2
*Cnv TmpObsrv T s	10	600	600		2
*Ploss Thr pre %	0	100	3		2
*Ploss Thr idle %	0	100	3		2
*Ploss Thr run %	0	100	<u> </u>		2
*Ploss Thrs Sng %	0	100	30		2
TTOPS THES SHO &	U	100	30		۷ ک

Sheet 113 of 213

		•		
*PLL freq band Hz	0.1	60	3	2
*PLL freq time ms	0	5000	500	2
*Cnv Vmag Thrs PU	0	5	1.2	2
*Turnovr Delay ms	0	5000	1000	2
*VaneBias (10) mm	7.0	13.0	10.0	2
*Vane Hysteres mm	0.0	20.0	1.0	2
*Profile Delay ms	0	10000	0	2
*Relevel Delay ms	0	5000	0	2
*Hover Enable 0/1	0	1	0	2
*HoverRangeTopLdg	0	139	0	2
	-		-	2
*Hover Min Time s	0	500	30	
*Hover Fade Out s	0	500	10	2
*Hover delta LW %	1	120	5	2
*Hover Gain PU	1.0	3.0	1.0	2
*AHC Enable 0/1	0	1	0	2
*TOC Car Dir 0/1	0	1	0	2
*AHC Kp gain	0.0	10.0	-	2
*AHC Kd gain	0.0	5.0	-	2
*AHC Kd RedFactor	0	4	-1	2
*AHC Notch frq Hz	0.0	2.3		2
*AHC Ln Enc Th mm	0	2000	-	2
*AHC Nm Enc Th mm	0	2000	-	2
*AHC Enc/Vn Th mm	0	2000	-	2
*Pos Stop Tol mm	0	7	3	2
*Vel Stop mm/sec	1	20	3	2
		-	6	2
	0	40	o =60% rated accel	
*Rated mtr i Arms	0	500	current	2
*Rated 113inim	1	5	1.67	2
PU				
*Inv I Limit %	0	150	100	2
*Cnv I Limit %	0	150	100	2
*SX Pick Time ms	100	2000	100	2
*Pos Corr Lim mm	0.01	50.0	0.05	2
*Max Battery I A	0.01	100.0	30	2
*AroMRo Delay	10	120	10	2
Sec				
*Vd out thresh PU	0	1.0	0.9	2
*Id Thresh 400V	4	10.0	9.0	2
*Id Thresh 700V	0	5.0	4.0	2
*CUR Limit T(Sec)	0	3.0	1.8	2
*DET SP MAX mm/s	0	400	100	2
*ARO Vbus fil ms	0	500	200	2
	-			
* ARO V Flt Dly s	0	3.0	1.0	2
* ARO Vbus Under %	0	100	80	2
*Start Shock LVL%	10	150	150	2
*Stop Shock LVL%	10	150	100	2
*NIARO Pdiv GAIN	1.0	10.0	1.0	2
*Self Tune 0/1	0	1	0	2
*Vane Length mm	10	1000	-	2
*UIS config 0/1/2	0	2	-	2
*UIS offset mm	0	250	-	2

Sheet 114 of 213

*UIS NO=0 / NC=1	0	1	-		2
*LV1 config 0/1/2	0	2	-		2
*LV1 offset mm	0	250	-		2
*LV1 NO=0 / NC=1	0	1	-		2
*LV2 config 0/1/2	0	2	-		2
*LV2 offset mm	0	250	-		2
*LV2 NO=0 / NC=1	0	1	-	<u> </u>	2
*DIS config 0/1/2	0	2	-		2
*DIS offset mm	0	250	-	-	2
*DIS NO=0 / NC=1	0	1	-	-	2
*Custom HwCmp 0/1	0	1	0	-	2
*Latcy UisDisOn %	0	5000	100		2
*Latcy UisDisOff%	0	5000	100		2
*Latcy 1/2LV on %	0	5000	100	-	2
*Latcy 1/2LV off%	0	5000			2
*RopeStrtch comp%	0	1000	100 100		2
	0			+	2
*HitchPress comp% *Duty kg % of car		1000	100		2
	0	200	50	+	
*PWM dnsft I %	0	200	100		2
*PWM dnsftFreq Hz	0	150	150		2
*Inv NTSD Ilimit%	0	88	88		2
*ETSC Trip Vel %	0	100	94		2
*SSB Trip Vel %	0	100	90		2
*CZ Drop Time ms	0	500	15		2
*HitchLw emptyBOT	0	99999	0		2
*HitchLw emptyTOP	0	99999	0		2
*HitchLw full BOT	0	99999	0		2
*HitchLw CaliDone	0	1	0		2
*Num LwSensorData	0	8	0		2
*Remote Auth min	0	65535	0		2
*MaskOut Warning1	0	999	0	_	2
*MaskOut Warning2	0	999	0	_	2
* Fan Duty Idle %	3	100	100		2
33 BRAKE	Min	Max	Default	Actual	Access Level
*BRK TRQ %Load1	120	300	150		2
*BRK TRO %Load2	110	%Load1 or	125	-	2
	110	150	120		2
*In Car noLoad kg	80	200	80	-	2
*Self BTI Block	0	200	0	+	2
*Check Unbalance	0	1	0	-	2
*Lockup by S-BTI	0	1	0	+	2
*Brk DelayTime ms	0	10000	1500	+	2
*BrkTrqOffset kgm	0	200	0	-	2
*BRK TRQ Trim %	50	150	100		2
*ZERO SPEED2 mm/s	1	20	100		2
*RATE BRK TRQ kgm	0	200	0		2
*BRK TRQ MODE	0	200	0		2
*BCM present 0/1	0	1	1		2
*Int Brk Type 0-4	0	4	0		2
		4	U	1	∠ ∠
			1		n n
*Brk Sw Type 0-6 *Brk Pick Time ms	0	6 10000	1 1500		2 2

Sheet 115 of 213

*Brk Setl Time ms					
DIK DELI IIME MS	0	10000	500		2
*Lft Brk Delay ms	0	10000	100		2
*Brk Lftd Dely ms	0	10000	30		2
*Brk ramp up t ms	1	5000	500		2
*Brk ramp dn t ms	1	3000	500		2
*Brk hold Dely ms	0	5000	200		2
*Brk Pick A	1	15.0	-		2
*Brk Pick %	10	100	85		2
*Brk Hold A	1	15.0	-		2
*Brk Drop %	1	50	30		2
*Brk Bus OVT %	100	150	130		2
*Brk OCT A	1	15.7	10.0		2
*Brk Bus UVT %	0	100	70		2
*Brk Nom DC V	40	350	310		2
*Brk dcv fscale V	800	1200	1050		2
*Brk Crr fscale A	14	50.0	15.7		2
*Brk R ohm	1.0	50	-		2
*Brk L H	0.1	50	-		2
*Brk I bw pick Hz	0.1	50	-		2
*Brk I bw hold Hz	0.1	50	-		2
*Brk War Det Cnt	0	10	3		2
*Brk Pick V %	0	100	70		2
*Brk Hold V %	0	100	40		2
*Sequenced Brk0/1	0	1	0		2
*SBSB Vel mm/s	0	3000	2500		2
*SBSB Motor Trq %	29	125	125		2
*SBSB Regen Trq %	0	79	0		2
34 MACHINE	Min	Max	Default	Actual	Access
					Level
*Mtr Shft Pwr kW	0	400	20		2
*D+d M+m and DDM		100	20		
*Rtd Mtr Spd RPM	1	5000	1200		2
*Rtd Mtr Spd RPM *Rtd Mtr Ln-Ln V	1 100		-		2 2
	-	5000	1200		
*Rtd Mtr Ln-Ln V	100	5000 600	1200 380		2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms	100 0	5000 600 600	1200 380 0		2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz	100 0 5	5000 600 600 60	1200 380 0 40		2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU	100 0 5 0	5000 600 600 60 0.5	1200 380 0 40 0.2		2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU	100 0 5 0 0	5000 600 600 60 0.5 0.5	1200 380 0 40 0.2 0.35		2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH	100 0 5 0 0 0.1	5000 600 600 0.5 0.5 10	1200 380 0 40 0.2 0.35 1		2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config	100 0 5 0 0 0.1 0	5000 600 600 0.5 0.5 10 4	1200 380 0 40 0.2 0.35 1 0		2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1	100 0 5 0 0 0.1 0 0	5000 600 600 0.5 0.5 10 4 1	1200 380 0 40 0.2 0.35 1 0 -		2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1	100 0 5 0 0 0 0.1 0 0 0 0	5000 600 600 0.5 0.5 10 4 1 1	1200 380 0 40 0.2 0.35 1 0 - 0		2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles	100 0 5 0 0 0 0.1 0 0 0 0 2	5000 600 600 0.5 0.5 10 4 1 1 100	1200 380 0 40 0.2 0.35 1 0 - 0 -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm	100 0 5 0 0 0.1 0 0 0 0 2 0.1	5000 600 600 0.5 0.5 10 4 1 1 100 20000	1200 380 0 40 0.2 0.35 1 0 - 0 - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A	100 0 5 0 0 0 0 0 0 2 0.1 0.1 0.1	5000 600 600 0.5 0.5 10 4 1 1 100 20000 1000	1200 380 0 40 0.2 0.35 1 0 - 0 - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A *Ld mH	100 0 5 0 0 0.1 0 0 0 2 0.1 0.1 0.1 0.01	5000 600 600 0.5 0.5 10 4 1 1 100 20000 1000 1000	1200 380 0 40 0.2 0.35 1 0 - 0 - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A *Ld mH *Lq mH	100 0 5 0 0 0.1 0 0 0 2 0.1 0.1 0.1 0.01 0.01	5000 600 600 0.5 0.5 10 4 1 1 100 20000 1000 1000 1000	1200 380 0 40 0.2 0.35 1 0 - 0 - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A *Lq mH *R Ohm	100 0 5 0 0 0.1 0 0 0 2 0.1 0.1 0.1 0.01 0.01 0	5000 600 600 60 0.5 10 4 1 100 20000 1000 1000 300	1200 380 0 40 0.2 0.35 1 0 - 0 - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A *Ld mH *Lq mH *R Ohm *T/A Slope %	100 0 5 0 0 0 0 0 0 0 2 0.1 0.1 0.1 0.1 0.01 0.0	5000 600 600 0.5 0.5 10 4 1 1 100 20000 1000 1000 1000 30 100	1200 380 0 40 0.2 0.35 1 0 - 0 - - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq I A *Ld mH *Lq mH *R Ohm *T/A Slope % *T/A Offset A	100 0 5 0 0 0 0 0 0 0 2 0.1 0.1 0.1 0.1 0.01 0.0	5000 600 600 0.5 0.5 10 4 1 1 100 20000 1000 1000 1000 30 100 500	1200 380 0 40 0.2 0.35 1 0 - 0 - - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Rtd Mtr Ln-Ln V *Rtd Mtr I Arms *Rtd Mtr Freq Hz *LR Ampl KP/Ki PU *LR Ampl RTC PU *Mtr Lsigma mH *Self Tune Config *Low Volt Op 0/1 *Geared StrJR 0/1 *Number of Poles *Rated Trq Nm *Rated Trq I A *Ld mH *Lq mH *Lq mH *T/A Slope % *T/A Offset A *Kt Slope 1/kNm	100 0 5 0 0 0 0 0 0 0 2 0.1 0.1 0.1 0.1 0.01 0.0	5000 600 600 60 0.5 0.5 10 4 1 100 20000 1000 1000 300 100 500 15	1200 380 0 40 0.2 0.35 1 0 - 0 - - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Sheet 116 of 213

	•				•
*Ld Slope mH/A	0	30	-		2
*Lq Slope mH/A	0	30	-		2
*Ld Slope uH/A	0.0	30000	-		2
*Lq Slope uH/A	0.0	30000	-		2
*Lq0 mH	0.01	1000	-		2
*Lq1 1/mA	0	400	-		2
*Lq2 1/mA^2	0	1000	-		2
*Ld0 mH	0.01	1000	-		2
*Rated Mag I A	0.1	1000	-		2
*Peak Mag I A	0	1000	-		2
*Rtr TimeConst s	0.001	10	-		2
*Max Flux time s	0.1	5.0	1.0		2
*Rated Motor rpm	1	5000	-		2
*Mag err thr eDeg	0	40	20		2
* LRT AC Level PU	0.01	0.5	0.06		2
*ARD LRT AC Lv PU	0.01	0.5	0.06		2
*LRT DC Level PU	0.1	0.5	0.1		2
*LRT mot err eDeg	0	10	8		2
*Fld Wkn Lvl %	0	200	100		2
*Fld Wkn BW Hz	0	50	10		2
*Inv Hrmnc On 0/1	0	1	0		2
*Inv Hrmnc dS %	-1	1	0		2
*Inv Hrmnc dC %	-1	1	0		2
*Inv Hrmnc qS %	-1	1	0		2
*Inv Hrmnc qC %	-1	1	0		2
35 PROFILE	Min	Max	Default	Actual	Access
					Level
*Man Speed mm/s	10	750	250		2
*Man Speed mm/s *Man Acc mm/s2	10 100	750 1200	250 350		
	_				2
*Man Acc mm/s2	100	1200	350		2 2
*Man Acc mm/s2 *Man Dec mm/s2	100 100	1200 1200	350		2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s	100 100 10	1200 1200 630	350 750 -		2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s	100 100 10 0	1200 1200 630 16000	350 750 - -		2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2	100 100 10 0 25	1200 1200 630 16000 1200	350 750 - - -		2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2	100 100 10 0 25 25 25	1200 1200 630 16000 1200 1200	350 750 - - - -		2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2	100 100 10 0 25 25 300	1200 1200 630 16000 1200 1200 1500	350 750 - - - - 500		2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3	100 100 0 25 25 300 100	1200 1200 630 16000 1200 1200 1200 1500 2400	350 750 - - - - 500 -		2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3 *Numb AltProfiles	100 100 0 25 25 300 100 0 0	1200 1200 630 16000 1200 1200 1500 2400 3 16000	350 750 - - - - 500 - 0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s	100 100 0 25 25 300 100 0 0 25	1200 1200 630 16000 1200 1200 1500 2400 3 16000 1200	350 750 - - - 500 - 0 -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt1 Jerk mm/s3	100 100 0 25 25 300 100 0 25 100	1200 1200 630 16000 1200 1200 1500 2400 3 16000 1200 2400	350 750 - - - - 500 - 0 - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 Jerk mm/s3 *Alt2 Speed mm/s	100 100 0 25 25 300 100 0 25 100 0	1200 1200 630 16000 1200 1200 1200 2400 3 16000 1200 2400 16000	350 750 - - - 500 - 0 - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2	100 100 0 25 25 300 100 0 25 100 0 25	1200 1200 630 16000 1200 1200 1200 2400 3 16000 1200 2400 16000 1200	350 750 - - - - 500 - 0 - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2 *Alt2 Jerk mm/s3	100 100 0 25 25 300 100 0 25 100 0 25 100	1200 1200 630 16000 1200 1200 2400 3 16000 1200 2400 16000 1200 2400	350 750 - - - - 500 - 0 - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt2 Speed mm/s *Alt2 Jerk mm/s3 *Alt2 Jerk mm/s3 *Alt3 Speed mm/s	100 100 0 25 25 300 100 0 25 100 0 25 100 0	1200 1200 630 16000 1200 1200 1500 2400 3 16000 1200 2400 16000 1200 2400 16000	350 750 - - - - 500 - - 0 - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 Jerk mm/s3 *Alt2 Jerk mm/s3 *Alt3 Speed mm/s *Alt3 AcDec mm/s2	100 100 10 0 25 25 300 100 0 25 100 0 25 100 0 25 100 0 25	1200 1200 630 16000 1200 1200 2400 3 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 1200	350 750 - - - 500 - 0 - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2 *Alt2 Jerk mm/s3 *Alt3 Speed mm/s *Alt3 AcDec mm/s2 *Alt3 Jerk mm/s3	100 100 0 25 25 300 100 0 25 100 0 25 100 0 25 100 0 25 100	1200 1200 630 16000 1200 1200 2400 3 16000 1200 2400 16000 1200 2400 16000 1200 2400 2400	350 750 - - - - 500 - 0 - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2 *Alt2 Jerk mm/s3 *Alt3 AcDec mm/s2 *Alt3 Jerk mm/s3 *Corr Speed mm/s	100 100 0 25 25 300 100 0 25 100 0 25 100 0 25 100 0 25 100 0 0 25 100 0	1200 1200 630 16000 1200 1200 2400 3 16000 1200 2400 16000 1200 2400 16000 1200 2400 200 2	350 750 - - - - 500 - 0 - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt2 AcDec mm/s2 *Alt2 Jerk mm/s3 *Alt2 Jerk mm/s3 *Alt3 Speed mm/s *Alt3 Jerk mm/s3 *Corr Speed mm/s *Base Speed %	100 100 0 25 25 300 100 0 25 100 0 25 100 0 25 100 0 25 100 0 25 100 0 50	1200 1200 630 16000 1200 1200 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 2400 16000 1200 2400 100	350 750 - - - - 500 - - 0 - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Decel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 Jerk mm/s3 *Alt2 Jerk mm/s3 *Alt3 Speed mm/s *Alt3 Jerk mm/s3 *Alt3 Jerk mm/s3 *Corr Speed mm/s *Base Speed % *Creep Speed mm/s	100 100 0 25 25 300 100 0 0 25 100 0 25 100 0 25 100 0 25 100 0 50 0	1200 1200 630 16000 1200 1200 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 100 100	350 750 - - - - - 500 - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2 *Alt3 Speed mm/s *Alt3 AcDec mm/s2 *Alt3 Jerk mm/s3 *Corr Speed mm/s *Base Speed % *Creep Speed mm/s	100 100 10 25 25 300 100 0 0 25 100 0 25 100 0 25 100 0 25 100 0 50 0 0	1200 1200 630 16000 1200 1200 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 100 100 100	350 750 - - - - 500 - - 0 - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Man Acc mm/s2 *Man Dec mm/s2 *Insp Speed mm/s *Nom Speed mm/s *Accel mm/s2 *Decel mm/s2 *Decel mm/s2 *Min Tdecel mm/s2 *Jerk mm/s3 *Numb AltProfiles *Alt1 Speed mm/s *Alt1 AcDec mm/s2 *Alt1 Jerk mm/s3 *Alt2 Speed mm/s *Alt2 AcDec mm/s2 *Alt3 Speed mm/s *Alt3 AcDec mm/s2 *Alt3 Jerk mm/s3 *Corr Speed mm/s *Base Speed % *Creep Speed mm/s	100 100 0 25 25 300 100 0 0 25 100 0 25 100 0 25 100 0 25 100 0 50 0	1200 1200 630 16000 1200 1200 1200 2400 3 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 2400 16000 1200 100 100	350 750 - - - - - 500 - - - - - - - - - - - -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Sheet 117 of 213

*MCSS Overspeed %	0	200	200		2
*MAN Overspeed %	0	200	125		2
*ARO Overspeed %	0	160	150		2
*ARO Speed mm/s	50	350	100		2
*ETP Spe %DutySpe	10	100	80		2
*ETP2 Spe %Duty	10	100	80		2
*ETP delta %	1	20	5		2
*Buffer/ETSD mm/s	0	16000	1000		2
*GovOverSpd mm/s	0	16000	0		2
*Man Load %	0	125	50		2
*Enc acc lim m/s2	0	1000	0		2
*Enc acc lim t ms	0	1000	0		2
*UCM Acc Up mm/s2	100	4000	1200		2
*UCM Acc Do mm/s2	100	4000	1200		2
*Dec Speed mm/s	0	16000	Blank		2
*TerminalPhase mm	0	25000	0		2
*TerminalPhs mm/s	10	8000	300		2
36 FACTORY	Min	Max	Default	Actual	Access
					Level
Factory Password	0	32000	0		2
*DC Bus fscale V	800	1200	1000		2
	000	1200	1000		2
*AC Line fscale V	800				
*AC Line fscale V *Ac/Dc Calibra PU	008	1.5	0		2
	-	1.5 10000	0 10000		2
*Ac/Dc Calibra PU	0				
*Ac/Dc Calibra PU *Cnv PWM freq Hz	0 2000	10000	10000		2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz	0 2000 2000	10000 10000	10000 10000	Actual	2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1	0 2000 2000 0	10000 10000 1	10000 10000 1	Actual	2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1	0 2000 2000 0	10000 10000 1	10000 10000 1	Actual	2 2 2 Access
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST	0 2000 2000 0 Min	10000 10000 1 Max	10000 10000 1 Default	Actual	2 2 2 Access Level
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd	0 2000 0 Min 0	10000 10000 1 Max 32000	10000 10000 1 Default 0	Actual	2 2 Access Level 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl %	0 2000 0 Min 0 0	10000 10000 1 Max 32000 200	10000 10000 1 Default 0 100	Actual	2 2 Access Level 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm	0 2000 0 Min 0 0 0 1 0	10000 10000 1 Max 32000 200 5	10000 10000 1 Default 0 100 1.5	Actual	2 2 Access Level 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain	0 2000 0 Min 0 0 0 1	10000 10000 1 Max 32000 200 5 4	10000 10000 1 Default 0 100 1.5 2.5	Actual	2 2 Access Level 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm	0 2000 0 Min 0 0 0 1 0	10000 10000 1 Max 32000 200 5 4 4 1000	10000 10000 1 Default 0 100 1.5 2.5 254	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU	0 2000 0 Min 0 0 0 0 1 0 5	10000 10000 1 Max 32000 200 5 4 1000 500	10000 10000 1 Default 0 100 1.5 2.5 254 100	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU	0 2000 0 Min 0 0 0 0 1 0 5 0.1	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 1.0 1.0	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 1.0 10 1.0 90	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl %	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 1 0.0 0 1	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 100 1.0 1000	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl %	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 999999	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 10000	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01 0 0 0 0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 100	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 10000 10000 0	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car %	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 100 15	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 0 0 0 0	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A	0 2000 0 Min 0 0 0 0 1 0 0 1 0.0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 0 0 0 0 0	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt CmpSlp mA/m	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 1000 0 0 0 0 0	Actual Actual	2 2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt Cmp SpmA/m	0 2000 0 Min 0 0 0 0 1 0 5 0.1 1 0.0 0 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000 2	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 1000 0 0 0 0 0 1	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt Cmp Slp mA/m *2D Enable? 0/1	0 2000 0 Min 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000 2 1	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 1000 1000 0 0 0 0	Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt Cmp Slp mA/m *Den con con con con con con con con con co	0 2000 0 Min 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000 2	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Actual Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt Cmp Slp mA/m *BeltCmp Lrn? 0/1 *ARO Bus LwrLim V *ARO Mot Id PU	0 2000 0 Min 0 0 0 0 1 0 0 1 0 0 1 0.0 0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000 2 1 800 10	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Actual Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
*Ac/Dc Calibra PU *Cnv PWM freq Hz *Inv PWM freq Hz *Cnv Hrmnc On 0/1 61 ENG ADJUST Engineer Passwrd *PFC Volt Lvl % *Min IGBT on t us *Pos Gain *Pos Err Lim mm *Vel fscale PU *LRT Frequency PU *LRT Frequency PU *LRT Ld Cycles *Vq out thresh PU *Sngl PWM ang deg *Test Noise Lvl % *Test Noise BW Hz *Test Noise BW Hz *Target mm *Drive Pmax kW *Load in car % *Drive Vrated m/s *Belt Cmp Off A *Belt Cmp Slp mA/m *Det Cmp Lrn? 0/1 *ARO Bus LwrLim V	0 2000 0 Min 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 10000 1 Max 32000 200 5 4 1000 500 1.0 10 1.0 90 1000 2500 99999 1000 15 10 2000 2 1 800	10000 10000 1 Default 0 100 1.5 2.5 254 100 0.9 3 0.5 20 100 1000 1000 1000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Actual Actual	2 2 Access Level 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Sheet 118 of 213

*Brk I Max A	0	20	10		2
*Brk I Offset A	1.1	20	2		2
*SVT Timeout min	0	999	240		2
*Pre Chg Lim sec	0.1	10.0	10.0		2
*Rollback Call mm	0	50	20		2
* Inv ReLe Ilimit%	0	100.0	100.0		2
*Vel Inr wc rad/s	0.1	10	2		2
*Torg Obs Err %	0	100	0		2
62 ENG TEST	Min	Max	Default	Actual	Access
					Level
Engineer Passwrd	0	32000	0		3
*Engineering Test	0	10000	0		3
*EngTest Param1	0	99999	0		3
*EngTest Param2	0	99999	0		3
*EngTest Param3	0	99999	0		3
*EngTest Param4	0	99999	0		3
*EngTest Param5	0	99999	0		3
*EngTest Param F1	0	99999	0		3
*EngTest Param F2	0	99999	0		3
*EngTest Param F3	0	99999	0		3
*EngTest Param F4	0	99999	0		3
*EngTest Param F5	0	99999	0		3
*Cnv PWM Avg 0/1	0	1	0		3
*Inv HrmncCmp Deg	0	180	0		3
*Inv Hrmnc BW Hz	0	1800	500		3
*Inv Hr Thrs mm/s	0	99999	0		3
*TimeDec Test 0/1	0	1	0		3
*Encoder Test 0/1	0	1	0		3
*Ovrtmp Estop 0/1	0	1	0		3
*HS Overtmp deg C	0	200	85		3
*Flr To Test	0	1000	0		3
*Flr Pos mm	0	99999	0		3
*Flr New Pos mm	0	99999	0		3
*Flr Vane Len mm	0	99999	0		3
*ALWA Confg 0/1/2	0	2	0	_	3
*ARO FLAG AR-Rly	0	3	0	_	3
*ARO FLAG BLV-Rly	0	3	0		3
*ARO Faults	0	8	0		3
*ARO Alarm	0	1	0		3
*UCM-EN BlkLatchd	0	3	0		3
*DDP Fault	0	1	0		3
*FAN off/0 on/1	0	1	1		3
*Fan Random Area	0	10	0		3
*Temp Over Test *Can Enc umm/cnt	0	100	0		3
	<u>1</u> 0	99999 0xFFFFFFF	1		3
*SSM Config	U	F	-		
*SSM PhantRPeriod	0	0xFFFFFFF F	-		3
*SSM MaxSlip	0	0xFFFFFFF F	-		3
*SSM MaxSlip2	0	0xFFFFFFF	-		3

		F			
*SSM MaxSlip3	0	0xFFFFFFF	-		3
	-	F			_
*VTE LdRatio Hyst	0	0xFFFFFFF	-		3
_		F			
*VTE Hitch Strtch	0	0xFFFFFFF	-		3
		F			
*VTE MaxErrSameEg	0	0xFFFFFFF	-		3
		F			
*VTE MaxErrOtherE	0	0xFFFFFFF	-		3
		F			
*VTE MaxDevFrmNom	0	0xFFFFFFF	-		3
(2) 22 (B <i>A</i> ¹	F		A	
63 DAC	Min	Max	Default	Actual	Access Level
Engineer Passwrd	0	32000	0		3
*DAC 1 Signal	0	Note 1	1		3
*DAC 2 Signal	0	Note 1	2		3
*DAC 3 Signal	0	Note 1	3		3
*DAC 4 Signal	0	Note 1	4		3
*DAC 5 Signal	0	Note 1	5		3
*DAC 6 Signal	0	Note 1	6		3
*DAC 1 Gain	0	15	7		3
*DAC 2 Gain	0	15	7		3
*DAC 3 Gain	0	15	7		3
*DAC 4 Gain	0	15	7		3
*DAC 5 Gain	0	15	7		3
*DAC 6 Gain	0	15	7		3
*LvlAccThresholds	0	0xFFFFFFF	-1		
		F			
64 I2C EEPROM	Min	Max	Default	Actual	Access Level
Factory Password	0	32000	0		2
*I2CEE Val@2.0000	0	65535	0		2
*I2CEE Val@3.0000	0	65535	0		2
*I2CEE Val@4.0000	0	65535	0		2

 Note 1: Define as the number of signals in the DAT (30959) and the GDCB Code

6.7

Detailed Parameter Description This section contains the detail descriptions for each of the service tool parameters.

6.7.1 3-1 CONTR	ACT
SVT Display	Description
Interface Type	Specifies the control system and interface being used:
	0 – RS422 Interface, MCSS or GCS, profile generator in controller
	1 – CAN Interface, TCBC or GCS, profile generator in drive
	2 – RS422-JIS interface, GCS, profile generator in controller
	3 – RS422-JIS-R interface, GCS, profile generator in controller
	4 – CAN interface, GCS, profile generator in controller
	See the table below for more detailed dependencies.

Interface Type	0	1	2	3	4
RS422 Interface	Х				
RS422-JIS Interface			Х		
RS422-JIS-R Interface				Х	
CAN Interface		Х			Х
Profile Generator and Position Control in Drive		Х			
Profile Generator and Position Control in Controller	Х		Х	Х	Х
Compatible with GCS-EN		Х			
Compatible with GCS-JIS			Х	Х	
Compatible with GCS-NSAA	Х			Х	
Compatible with MCSS	Х				
Compatible with TCBC		Х			
Optimized ARO				Х	
EN-ARO		Х			
EN-MRO		Х			
JIS Feature – Software Reset (Remote Rescue)		Х	Х	Х	
JIS Feature – Battery Mode (ARO)			Х	Х	
JIS Feature – Automatic recovery at Earthquake		Х	Х	Х	Х
JIS Feature – Overcurrent detection		Х	Х	Х	
JIS Feature – Drive error code (remote Inspection)		Х	Х	Х	
JIS Feature – Brake switch detection		Х		Х	
JIS Feature – DBR-JIS		Х		Х	
JIS Feature – UCMP-JIS(E2)					Х
Central Failure Management CFM		Х			
TCI Limit		Х			
Smart DBR		Х			
Self-BTI		Х			

JIS Function Specifies if all the following JIS features are enabled or disabled: 0 - Disabled 1 - Enabled JIS Feature - Software Reset (Remote Rescue) JIS Feature - Drive error code (remote Inspection) JIS Feature - Drive error code (remote Inspection) JIS Feature - UCMP-JIS for LCRD and HSOVF 2. Enabled JIS Feature - UCMP-JIS for LCRD and HSOVF 2. Enabled JIS Feature - UCMP-JIS(E2) for "Interface Type = 4 - Over CAN" JIS Feature - UCMP-JIS(MCS416) for "Interface Type = 3 - RS422" 1 or 2 - Enabled JIS Feature - Overcurrent detection JIS Feature - Nationatic recovery at Earthquake JIS Feature - Prake switch detection for UCMP) JIS Feature - Encoder fault management JIS Feature - Nagnet position monitoring under constant speed JIS Feature - Brake open test mode Duty Type Visible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A - No specification of the duty (Default) 1000-1999 - For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: 15 – 15A Regenerative Drive, version 2
JIS Feature – Power-loss fault management JIS Feature – Encoder fault management JIS Feature – Magnet position monitoring under constant speed JIS Feature – Velocity control during Re-leveling JIS Feature – Brake open test modeDuty TypeVisible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A – No specification of the duty (Default) 1000~1999 – For Gen2 P&B system typeDrive TypeVisible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used:
JIS Feature – Encoder fault management JIS Feature – Magnet position monitoring under constant speed JIS Feature – Velocity control during Re-leveling JIS Feature – Brake open test modeDuty TypeVisible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A – No specification of the duty (Default) 1000~1999 – For Gen2 P&B system typeDrive TypeVisible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used:
JIS Feature – Magnet position monitoring under constant speed JIS Feature – Velocity control during Re-leveling JIS Feature – Brake open test mode Duty Type Visible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A – No specification of the duty (Default) 1000~1999 – For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: Specifies the drive being used:
JIS Feature – Velocity control during Re-leveling JIS Feature – Brake open test mode Duty Type Visible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A – No specification of the duty (Default) 1000~1999 – For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used:
JIS Feature – Brake open test mode Duty Type Visible only for "JIS Function 0/1" = 1 or HSOVF drives. Specifies the duty No. of elevator system A – No specification of the duty (Default) 1000~1999 – For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: Specifies the drive being used:
Specifies the duty No. of elevator system A - No specification of the duty (Default) 1000~1999 - For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: Specifies the drive being used:
Specifies the duty No. of elevator system A - No specification of the duty (Default) 1000~1999 - For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: Specifies the drive being used:
A - No specification of the duty (Default) 1000~1999 - For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used: Specifies the drive being used:
1000~1999 - For Gen2 P&B system type Drive Type Visible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used:
Drive TypeVisible only if drive has no el2C EEPROM storage capabilities (no drive type auto-detection) and Duty Type = 1. Specifies the drive being used:
auto-detection) and Duty Type = 1. Specifies the drive being used:
Specifies the drive being used:
20 – 20A Regenerative Drive, version 2
25 – 25A Regenerative Drive
30 – 30A Regenerative Drive, version 2
40 – 40A Regenerative Drive
41 – 40A Regenerative Drive, version 2
60 – 60A Regenerative Drive
90 – 90A Regenerative Drive 120 – 120A Regenerative Drive
234 – 340A Regenerative Drive (200V type)
416 – 160A Regenerative Drive
428 – 280A Regenerative Drive
460 – 600A Regenerative Drive
ARO Type Specifies the type of Automatic Rescue Operation (ARO) being used:
1 – NSAA/JIS: None (no ARO hardware connected to drive)
EN: ARPB-based ARO capable – ARO initiated via CAN if ARPB-
based hardware connected
 2 – JIS Interruptible Automatic Rescue Operation for JIS (ARO) 3 – JIS Non-interruptible Automatic Rescue Operation for JIS (NIARO)
4 – NSAA/EN Optimized Automatic Rescue Operation (OARO)
4 – NSAA/EN Optimized Automatic Rescue Operation (OARO) 5 – JIS Interruptible Automatic Rescue Operation for 428G Drive

ARO Release? 1/2	Visible only with ARO Type = 4 and "Interface Type" = 3.
	This parameter specifies if ARU1 hardware (48Vdc) or ARU2 hardware (96Vdc) is
	present. The default value is 1, where the ARU hardware is expected to be 48V
	battery voltage based architecture. In ARU1, ARO is executed only in the
	direction of gravity. If ARU R2 is used as the hardware, then this parameter needs
	to be set to 2.
ARD Operation	This parameter specifies which power source is connected to the drive during
	Automatic Rescue Operation:
	0 = Battery (default value; used by legacy ARO)
	1 = 3-phase AC (used by C-ARD with 380Vac three phase)
	2 = Single-phase AC (used by C-ARD with 380Vac single phase)
	ARD = Automatic Rescue Device
	C-ARD = Commercial Automatic Rescue Device
ARO Delay Time s	Visible only with ARO Type = 4 and "Interface Type" = 3.
	This is the delay time the drive determines it is time to start an ARO operation
	starting from the loss of the ac line voltage. The additional delay is introduced for
	reliable power loss detection.
	The default value is 30.
ARO Time Max min	Visible only with ARO Type = 4 and "Interface Type" = 3.
	This is the total time that the drive allows for a single ARO run. The main purpose
	is to save battery energy. At the end of this time the drive disconnects the battery
	from drive logic also, leaving the drive totally loss of power condition until the ac
	line comes back.
	The default value is automatically set to 5 for ARU1 or 15 for ARU2.
Bat Peak Curr A	Visible only with ARO Type = 4.
	This parameter sets the maximum battery current command (converter current
	limit) during an ARO run.
	The software default is 45A, however, the installer must adjust the parameter as
	follows for ARU R1:
	50 - for ARU R1.
	45 - for ARU R2.
Motor Type	Visible only for Duty Type = 1
	Specifies the motor being used. See Section 9 for a list of pre-defined motor
	types and their associated parameter values.
	If the motor is not in the list, choose:
	901 – Generic Induction motor
	902 – Generic PM motor
	The equivalent circuit parameters in section 3-4 MACHINE have to be
	entered for custom motors.

Duty Speed mm/s	Visible only for Duty Type = 1 Contract Duty Speed. For reference, mm/s = FPM x 5.08 This should be the contract speed (e.g. 1000 mm/s if the elevator is specified for 1m/s, even if the machine is rated for more). The rated RPM must be the corresponding rpm of the motor (not necessarily the motor's nominal speed). The elevator's nominal speed "Nom Speed mm/s" in the profile menu is linked to the "Duty speed" such: It determines the maximum speed that is reached during the profile of a NORMAL run. It may be smaller than the duty speed. It should not be set considerably higher than the duty speed because then it would trigger the overspeed detection. Warning: For CAN-based controllers, set the elevator
	to ERO before changing this parameter. Otherwise, the
	car may start a correction run using the wrong speed and result in
	tripping the governor. Ensure the three parameters: Encoder PPR,
	Duty Speed mm/s, and Rated rpm are set consistent
	with each other before placing the car on normal operation.
Rated rpm	Visible only for Duty Type = 1
	Required motor RPM to reach contract speed. Describes a fixed relation to contract duty speed (in mm/sec) considering roping, gear ratio, and sheave diameter (in mm): RPM = speed x Gear Ratio x Roping x 19.1 / Sheave Diameter
	Warning: For CAN-based controllers, set the elevator
	to ERO before changing this parameter. Otherwise, the
	car may start a correction run using the wrong speed and result in
	tripping the governor. Ensure the three parameters: Encoder PPR,
	Duty Speed mm/s, and Rated rpm are set consistent
	with each other before placing the car on normal operation.
Inertia kg-m2	Total system inertia with balanced car. The value should be set according to contract data.
	One way to estimate the inertia is to use the following formula: $J = 2 + 6 * DUTY_LOAD * (SHV_RADIUS^2)$
	Other ways to estimate inertia are given in Sections 9.1 and 9.2.
	Note: the inertia value is automatically adjusted in the software as a function of car load. The adjusted value can be viewed in the service tool Inert used kg-m2.
Encoder Type 0/1	Visible only for Duty Type = 1
	Specifies the type of encoder: 0 – Incremental encoder
	1 – Sinusoidal encoder
	When using incremental encoder, there is a signal integrity check which can
	result in the fault 524 No Enc Signl. The check is only performed if the
	encoder termination is double-ended (see Enc termintn 1/2).
	When using sinusoidal encoder, there is also a signal integrity check that results in the fault 541 SinCos Warng.

Enc termintn 1/2	Visible only for Duty Type = 1
	This parameter stands for the type of ending of the encoder.
	1 – single ended termination
	2 – double ended termination
Encoder PPR	Visible only for Duty Type = 1
	Specifies the number of pulses per revolution (PPR) of the encoder.
	Warning: For CAN-based controllers, set the elevator
	to ERO before changing this parameter. Otherwise, the
	car may start a correction run using the wrong speed and result in
	tripping the governor. Ensure the three parameters: Encoder PPR,
	Duty Speed mm/s, and Rated rpm are set consistent
	with each other before placing the car on normal operation.
Duty Load kg	Visible only for Duty Type = 1
2001 2000 119	Contract Duty Load. This parameter is used only to calculate pretorque.
	Pretorque, as a force applied at the car, is commanded as a percentage of the
	rated full load of the car. For reference, $kg = lbs / 2.2$
AC Main Vrms	Visible only for Regen Drives
	Nominal AC line voltage (max 480 Vrms). This is used to determine under-
	voltage and over-voltage conditions as well as control gains for the converter. If
	the voltage entered is in the range [380, 415], then it is assumed the nominal
	voltage is the average of the range, 397.5 Vrms.
	See also 302 VAC Over and 303 VAC Under.
Load Weigh Type	Visible only when "Interface Type" = 1
	Specifies loadweighing device:
	0 – None
	1 – LWB2 via CAN
	2 – Hitch LW via CAN
	3 – Discrete LW via CAN
Load Wgh Lvl 1 %	Visible only when Load Weigh Type = 3
Load Wgh Lvl 2 %	For discrete load weighing the percentage of load in car when the first switch
Load Wgh Lvl 3 %	goes off and,
Load Wgh Lvl 4 %	the percentage of load in car when the second switch goes off and,
Load Wgh Lvl 5 %	the percentage of load in car when the third switch goes off and,
	the percentage of load in car when the fourth switch goes off and,
	the percentage of load in car when the overlaod switch goes off.
Balance %	Visible only when "Interface Type" = 1 or HSOVF or "Brake Tprque test
	mode"
	Nominal counterweight balance setting in percent.
Roping 14	Visible only when Interface Type = 1 or "JIS Function 0/1" = 1 or HSOVF
	drives.
	The value is used at hitch load weighing calibration during the learn run and by
	the brake torque test.

-	
Vane Sensor Type	Visible only when "Interface Type" = 1
	Specifies vane sensor configuration, see also 4.8 PRS:
	0 – PRS2 with ADO/RLEV, 4Sensors, 250mm, N.O.
	1 – PRS2 w/o ADO/RLEV, 3Sensors, 250mm, N.O.
	2 – PRS2, 1Sensor, 250mm, N.O.
	3 – RPD-P2, 1Sensor, 250mm, N.C.
	4 – CEDES Photo, 1Sensor, 150mm, N.O.
	5 – CEDES Photo, 4Sensor, 250mm, N.O.
	6 – RPD-P3, 4Sensors, 250mm, N.O.
	7 – PRS5, 1Sensor, 170mm, N.O.
	8 - PRSxx, $1Sensor$, $130mm$, N.O.
	9 - PRS2 1+2LV, 2Sensors, 250mm, N.O.
	10 – RPD-P7A, 4Sensors, 150mm, N.O.
	11 – RPD-P8A, 4Sensors, 180mm, N.O.
	12 - PRS8N, 4 Sensors, 170mm, N.O.
	15 - PRS8N, 1 Sensor, 170mm, N.O.
	99 – Custom PRS, configure in 6.7.2 3-2 ADJUSTMENT,
	"Vane Length mm""DIS NO=0 / NC=1"
PRS via CAN 0/1	Visible only when "Interface Type" = 1
	Specifies if PRS signals are connected directly to drive or read via CAN:
	0 – PRS signals wired directly to the drive
	1 – PRS signals received via CAN bus
DDP sec	Visible only when "Interface Type" = 1
	Specifies the time for Delayed Drive Protection. Has to be increased according to
	contract speed and floor distance if required.
	Note that if an alternate speed profile is used (Alt1 Alt3 Speed) which is slower
	than the nominal speed profile then the value of this parameter will be
	proportionally increased internally. In any case the upper limit is 45 sec.
	See fault: 517 DDP Error
ARD DDP sec	Visible only when "Interface Type" = 1
	Specifies the time for Delayed Drive Protection during ARD . Has to be increased
	according to contract speed and floor distance if required.
	Note that if an alternate speed profile is used (Alt1 Alt3 Speed) which is slower
	than the ARD speed profile then the value of this parameter will be
	proportionally increased internally. In any case the upper limit is 600 sec and default
	270.
	See fault: 517 DDP Error
Number of DZ	Visible only when "Interface Type" = 1
	Total number of door zones.
	Note: Value may be changed by the system's auto-installation routines.
Bottom DZ	Visible only when "Interface Type" = 1
	Bottom door zone number. Must match TCBC parameter "BOTTOM". Should be
	zero except for units within a group with different bottom door zone numbers.
	Note: Value may be changed by the system's auto-installation routines.
DZ in 1LS	Visible only when "Interface Type" = 1
	Number of door zones in 1LS.
	Note: Value may be changed by the system's auto-installation routines.
DZ in 2LS	Visible only when "Interface Type" = 1 and "412RCR,HSOVF drive" and "JIS
	Option Mode = 80" and "Landing Table = Invalid"
	Number of door zones in 2LS.
	This is valid for TCI mode with "Invalid Floor" during construction mode.

LS Pos Recov 0/1	Visible only when "Interface Type" = 1
	Setting this parameter to '1' will allow the drive to recover position during rescue
	run within LS if there is only one door zone in LS.
	0 – Prohibit position recovery in LS during rescue run
	1 – Allow position recovery in LS during rescue run
	Default setting is '0'.
ARO Bus Nom DC V	Visible only for Duty Type = 1 and ARO Type = 2 or 5.
	This parameter is used for "DC Bus Under fault" during ARO operation. The
	default is set to "180V".
6LS-TYP 0/1	Visible only when "Interface Type" = 1 and not drive OVFR02A-412 detected
	Type of 6LS sensor.
	0 = standard hardware sensor present
	1 = no hardware 6LS present; 2LS evaluated instead (by GECB).
	Note: This parameter is mainly used as a "safety" backup for a GECB parameter
	which has the same name. Both parameters must be set to the same value.
6LS-TYP 0-2	Visible only when "Interface Type" = 1 and drive OVFR02A-412 detected
	0,1 = see above
	For LVA – GeN2 Premier at 3 & 3.5 m/s the drive is installed in the hoistway.
	2 = TCI run up possible above TOP unitI mechanical 6LS.
	Note: The according GECB parameter has to be set to 0.
DBR Mode 0-3	
DBR Mode 0-3	Visible only when Interface Type = 1
	To avoid energy recovering an external Smart DBR unit can be used. It must be
	connected to the DC link.
	A - standard regen operation as usual, no Smart DBR required.
	1 - no energy recovering:
	In case of negative converter current the converter is disabled and the
	control of the DC link voltage has to be performed by the external
	Smart DBR unit.
	2 - switchable DBR mode via discrete input P 6.6:
	0V: standard regen operation
	24V: no energy recovering
	3 - same as 2 but discrete input logic reversed.
UCM-EN on/off	Visible only when "Interface Type" = 1
	Activate or deactivate UCM (Unintended Car Motion) Monitoring feature as
	designed for EN81 controller.
	0 = UCM-EN monitoring off (but UCM-EN brake monitoring still active)
	1 = UCM-EN monitoring on
	Note: When using this feature, the corresponding feature in the GECB must be
	enabled (UCM_TYP=3), too, otherwise the drive will not run!!!
TwoStepSpeed 0/1	Visible only when "Interface Type" = 1
	This feature is used in Korea for modernization market. It allows the speed of the
	modernized elevator to be increased using the same buffer, top clearance and pit
	depth. Setting this parameter to 1 enables the two speed operation feature:
	0 : Normal operation
	1: Set the two step speed profile operation
	The requirements for the buffer, top clearance and pit depth are achieved by
	lowering the speed when approaching the terminal zones. The speed reduction is
	triggered by additional door zone sensors near the top and bottom. The sensors
	are installed in addition to the normal door zone sensors. The location of the door
	zone sensors is indicated by the following two parameters "DZ below 1DS" and
	"DZ above 2DS". The speeds are determined by the parameters:
	"Nom Speed mm/s" and "Dec Speed mm/s".
	DS status can be monitored with "DS DS1 DS2 FLR".
	For sensor failure, see the event "410 Low Speed".

Bottom side sensor position of two step speed profile operation. Example: If bottom floor = 1F and sensor position =4F, "DZ above 2DS Visibile only when "TwoStepSpeed 0/1" = 1 Top side sensor position of two step speed profile operation. Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F - 8F) SFC InWiring 0/1 Visibile only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input via separate UIB & DIB 1- Safety Chain input wis separate UIB & DIB 1- Safety Chain input wis separate UIB & DIB 1- Safety Chain input wis separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the bottom floor. Then at the top floor, and when the DIS signal becomes high at the bottom fl		
Example: If bottom floor = 1F and sensor position =4F, "DZ below 1DS" = 3 (4F - 1F) DZ above 2DS Visibile only when "TwoStepSpeed 0/1" = 1 Top side sensor position of two step speed profile operation. Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F - 8F) SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input with UIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone.	DZ below 1DS	
"DZ below 1DS" = 3 (4F – 1F) DZ above 2DS Visibile only when "TwoStepSpeed 0/1" = 1 Top side sensor position of two step speed profile operation. Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F – 8F) SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input via separate UIB & DIB 1- Safety Chain input via separate UIB & Signal. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		
DZ above 2DS Visibile only when "TwoStepSpeed 0/1" = 1 Top side sensor position of two step speed profile operation. Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F - 8F) SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input win Separate UIB & DIB is available instead of separate UIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		Example: If bottom floor = 1F and sensor position =4F,
Top side sensor position of two step speed profile operation. Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F - 8F) SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input will WIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		"DZ below 1DS" = 3 (4F – 1F)
Example: If top floor = 10F and sensor position =8F, "DZ above 2DS" = 2 (10F - 8F)SFC InWiring 0/1Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1 - Safety Chain input via separate UIB & DIB 1 - Safety Chain input with UIB & DIB tied together for all operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs.ERO Type0/1Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit)TCI Pos LimitApplicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors.0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone.1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone.Note: From the Korea government inspector's requirement, the stopping position	DZ above 2DS	
"DZ above 2DS" = 2 (10F - 8F) SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1- Safety Chain input with UIB & DIB tied together for all operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		
SFC InWiring 0/1 Visible only when "Interface Type" = 1 Specifies Safety Chain input via separate UIB & DIB 1 - Safety Chain input via separate UIB & DIB 1 - Safety Chain input with UIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. 1 = stopping position of TCI at the top floor, the car can stop 25mm higher than the landing zone.		
Specifies Safety Chain input configuration. 0- Safety Chain input via separate UIB & DIB 1- Safety Chain input vith UIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		
0- Safety Ćhain input via separate UIB & DIB 1- Safety Chain input with UIB & DIB tied together for all operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) Applicable only when "Interface Type" = 1. TCI Pos Limit TCI Pos Limit 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone.	SFC InWiring 0/1	
1- Safety Chain input with UIB & DIB tied together for <u>all</u> operation modes. Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		Specifies Safety Chain input configuration.
Note: a setting of 1 is necessary when only one common safety-chain signal is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		0- Safety Chain input via separate UIB & DIB
is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		1- Safety Chain input with UIB & DIB tied together for all operation modes.
is available instead of separate UIB & DIB signals. This signal must then be connected to both UIB and DIB inputs. ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		Note: a setting of 1 is necessary when only one common safety-chain signal
ERO Type 0/1 Applicable only when "Interface Type" = 1. The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		is available instead of separate UIB & DIB signals. This signal must then be
The user can choose how ERO runs behave at the terminal landing. The parameter has the following options: 0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		connected to both UIB and DIB inputs.
parameter has the following options: 0 = without limit 1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position	ERO Type 0/1	Applicable only when "Interface Type" = 1.
0 = without limit 1 = car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		The user can choose how ERO runs behave at the terminal landing. The
1= car stops at terminal landings (same as TCI-limit) TCI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		parameter has the following options:
 ICI Pos Limit Applicable only when "Interface Type" = 1. This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		0 = without limit
 This parameter determines the position where the TCI runs is ended in the terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		1= car stops at terminal landings (same as TCI-limit)
 terminal floors. 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 	TCI Pos Limit	Applicable only when "Interface Type" = 1.
 0 = stopping position of TCI at the terminal door zone is when the UIS signal becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		This parameter determines the position where the TCI runs is ended in the
 becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		terminal floors.
 becomes high at the top floor, and when the DIS signal becomes high at the bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		
 bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		0 = stopping position of TCI at the terminal door zone is when the UIS signal
 the landing zone. 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		becomes high at the top floor, and when the DIS signal becomes high at the
 1 = stopping position of TCI at the terminal door zone is when the door zone s at the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position 		bottom floor. Then at the top floor TCI stop, the Car will stop about 70mm under
the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		the landing zone.
the terminal landing. Then at the top floor, the car can stop 25mm higher than the landing zone. Note: From the Korea government inspector's requirement, the stopping position		
landing zone. Note: From the Korea government inspector's requirement, the stopping position		1 = stopping position of TCI at the terminal door zone is when the door zone s at
Note: From the Korea government inspector's requirement, the stopping position		the terminal landing. Then at the top floor, the car can stop 25mm higher than the
		landing zone.
of the TCI should be passed the door zone. Therefore option 1 is required to meet		
the requirement of the Korea government inspector.		the requirement of the Korea government inspector.

6.7.2 3-2 ADJUSTMENT

SVT Display	Description
JIS Option Mode	Visible only for "JIS Function 0/1" = 1 or HSOVF drives.
	0 – Normal (Default)
	1 – For motor running with safety device locked. (Gen2 P&B)
	If this is set to 1, the following setup is automatically used.
	Track Error mm/s = 400 and No enc flt t sec =2.0.
	2 – TRACKING_200 (Sets Track Error mm/s = 200)
	3 – TRACKING_300 (Sets Track Error mm/s = 300)
	11 – EAR_SETUP (see related parameters to EQAR)
	60 – WITHOUT_UCMP (without UCMP module or for any fault mode of UCMP)
	99 – EAR_TEST (for EQAR test)
	100 – FAN_NORMAL (Sets "Fan Random Area" to "0" for Gen2PB)
	101-106 – Duty Parameter set for GeN2 Comfort or Life

StartShock LVL2%	Visible only for JIS Option Mode= 11 or 99
	This parameter is used for "start shock" detection in EQAR.
	"Shock flag" becomes "TRUE" with the following condition between the run start
	and "Vel fbk = DET SP MAX mm/s".
	"Absolute Inv Iq Diff [A]" > "Shock Threshold [A]" where:
	"Absolute Inv Iq Diff [A]" = "Inv Iq Ref_max" – "Inv Iq Ref_min"
	"Inv Iq Ref_max": Max of "Inv Iq Ref" during the term for Start Shock.
	"Inv Iq Ref_min": Min of "Inv Iq Ref" during the term for Start Shock.
	"Shock Threshold [A]" = "Rated Trq I A" x "Start Shock LVL2%"
Run Shock LVL%	Visible only for JIS Option Mode = 11 or 99
	This parameter is used for "run shock" detection in EQAR.
	"Shock flag" becomes "TRUE" with the following condition during
	"mcssCommand.dictatedAcc = 0" and "Vel fbk > DET SP MAX mm/s".
	"A base lists have be Diff [A]" a "Obasely Thready and [A]" with small
	"Absolute Inv Iq Diff [A]" > "Shock Threshold [A]" where:
	"Absolute Inv Iq Diff [A]" = "Inv Iq Ref_max" – "Inv Iq Ref_min"
	"Inv Iq Ref_max": Max of "Inv Iq Ref" during the term for Start Shock.
	"Inv Iq Ref_min": Min of "Inv Iq Ref" during the term for Start Shock.
	"Shock Threshold [A]" = "Rated Trq I A" x "Run Shock LVL%"
EAR UP MtrI Arms	Visible only for JIS Option Mode= 11 or 99
	This parameter is used for "run shock" detection in EQAR.
	If UP run is done with EQAR, this setting threshold checks the "Inv Iq fbk".
EAR Inv Lmt Arms	Visible only for JIS Option Mode= 11 or 99
DAN TIV DIIL ATIIS	
	This parameter is used for "Drive Limit" detection in EQAR.
	If the run is done with EQAR, this setting threshold checks the "Inv Iq fbk".
	When the "Inv Iq fbk" exceeded this threshold, the Drive sends "DL" to MCSS.
EAR Overload sec	Visible only for JIS Option Mode= 11 or 99
	This parameter specifies the maximum time the drive is allowed to operate at the
	rated accelerating current of the motor in EQAR. The rated accelerating current
	of the motor is assumed to be 167% of the <i>continuous</i> current rating of the motor
	which is specified by the parameter EAR mtr OVL Arms.
	The maximum time allowed at other operating currents is protected and each be
	The maximum time allowed at other operating currents is prorated and can be
	calculated using the following formula:
	$\left(I_{a}^{2}-I_{a}^{2}\right)$
	$t = \left(\frac{I_{accel}^2 - I_{cont}^2}{i^2 - I_{cont}^2}\right) t_{ovl}, i > I_{cont}$
	$(i^2 - I_{cont}^2)^{\circ \circ $
	$t = \infty, i \le I_{cont}$
	where
	I_{cont} = continuous current rating of the motor (Arms), specified by
	service tool parameter EAR mtr OVL Arms.
	I_{accel} = rated accelerating current of the motor (Arms), assumed to be
	1.67 x I _{cont}
	tovi = allowed operating time, given by service tool parameter EAR
	Overload sec
	i = actual drive current (Arms)
	See fault: 109 Overload
EAR mtr OVL Arms	Visible only for JIS Option Mode= 11 or 99
	Specifies the continuous rated current of the motor in EQAR. See above.
DDD ENE_1 DIG C	
DBR ENE=1 DIS=0	Visible only for "JIS Function 0/1" = 1.
	This mode is set to 1, when using a generator to input AC power or having a DBR
	option.
	This mode might generate "VdcOver" in Regen operation if there is not DBR unit.

Car Dir 0/1	Specifies direction of the car:
	0 – original
	1 – reversed direction of profile and speed encoder
	Must be toggled when car starts in other than expected direction.
Motor Phase 0/1	Visible only for Duty Type = 1
	Specifies orientation of motor phases relative to encoder direction:
	0 – NEMA compliant motor phasing
	1 – reversed direction of motor phasing
	Must be toggled if motor phases are wired incorrectly.
Single Phase 0-3	Visible only for Duty Type = 1
	Specifies if a single-phase power supply is being used:
	0 – normal 3-phase power supply
	1 – single-phase power supply (fixed)
	2 – 3-phase or single-phase; selectable at drive power-on
	3 – Selected single-phase mode (only support for MCSS system)
	Fixed single-phase power is intended for use only during construction. Selectable
	3- or 1-phase mode can be used for rescue operation using a battery-powered
	single-phase power supply.
	For MCSS system, the 3 phases or single phase is selected after automatic DSP
	reset when MCSS sends the phase mode change command. And then the
	parameter value is automatically set to 2 or 3.
AC SnglPh Main V	Visible only when Single Phase 0-3 is set to 2 or 3.
	AC line voltage used when Single Phase 0-3 is set to 2 and "Single-Phase
	mode" has been selected at drive power-on by the OCSS (via CAN-bus).
	Note: Set automatically to value of (AC Main Vrms $/\sqrt{3}$) when invisible.
Start Gain Ot PU	Visible only for Duty Type = 1
	Used to increase the responsiveness of the velocity control when load weigh
	sensor is not valid or not installed. A value of 1.0 essentially disables it. It can be
	increased to typical of 4.0. The maximum acceptable might depend on the
	system because it causes vibration problems as it is increased. However, it can
	be used for discrete load weighing sensors to decrease roll back.
Start filt BW PU	This parameter is visible only if Start Gain Ot PU is set larger than 1.
	Used to increase the responsiveness of the velocity control when load weigh
	sensor is not valid or not installed. A value of 1.0 essentially disables it. It can be
	increased to typical of 3.5. The maximum acceptable might depend on the
	system because it causes vibration problems as it is increased. However, it can
	be used for discrete load weighing sensors to decrease roll back.
Start Gain In PU	This parameter is visible only if Start Gain Ot PU is set larger than 1.
	Used to increase the responsiveness of the velocity control when load weigh
	sensor is not valid or not installed. A value of 1.0 essentially disables it. It can be
	increased to typical of 4.0. The maximum acceptable might depend on the
	system because it causes vibration problems as it is increased. However, it can
	be used for discrete load weighing sensors to decrease roll back.
SG Period sec	This parameter is visible only if Start Gain Ot PU is set larger than 1.
SG Period sec	Use to control the duration of high bandwidth velocity control startup for rollback
SG Ramp Down sec	reduction. This parameter is used in conjunction with Start Gain Ot PU.
SG RAMP DOWN SEC	This parameter is visible only if Start Gain Ot PU is set larger than 1.
	Use to control the duration of transition from high velocity bandwidth control to
Treal Creation I and /	nominal for rollback reduction.
End Gn Vel mm/s	This parameter is visible only if Start Gain Ot PU is not set to 1.
	This parameter specifies the speed below which the velocity gain approaches
	and becomes equal to the Start Gain Ot PU parameter setting at the end of a
	run.

Norm Vel Resp PU	This parameter specifies the normalized response (normalized time constant) of the PI regulator of the outer velocity loop during normal runs . The default value of this parameter is 1. This parameter is useful for adjusting the stopping performance of systems that have a relatively high friction to inertia ratio by setting this parameter to less than 1.
Rele Vel Resp PU	Visible only for "JIS Function 0/1" = 1 or HSOVF drives. This parameter specifies the normalized response (normalized time constant) of the PI regulator of the outer velocity loop during relevel runs . The default value
	of this parameter is 1. This parameter is useful for adjusting the stopping performance of systems that have a relatively high friction to inertia ratio by
	setting this parameter to less than 1.
Pretorque Trim %	Used to adjust pre-torque values to prevent rollback. Normally, this should be set to 100%.
Pretorque Trim2%	Visible only for "Geared StrJR 0/1" = 1
	Used to adjust the pretorque values during regenerative runs only. This is useful in applications that use a worm-gear to compensate for star-jerk caused by the worm-gear. See related parameter "Geared StrJR 0/1"
Pretorq Mod 0/1	Visible only for Duty Type = 1
	When set to 1, this parameter enables a special pre-torque function for systems
	that have a high hoistway mechanical friction component that is both load and
	direction dependent (i.e. Double Deck Systems). When enabled, this function
	helps prevent rollback or roll forward for these systems by modifying the pre-
	torque calculation to account for the mechanical friction (when pre-torque differs
	significantly from stop torque).
	Peters this function is anabled, it is required that the load adjustment of MCSS
	Before this function is enabled, it is required that the load adjustment of MCSS
	should be completed. Also, this parameter should be set to 0 during any and all
	loadweigh system adjustment.
	A- disable.
	1- enable.
Track Error mm/s	Visible only when NOT GEN2 machine (See "Motor Type")
	In all operating modes, the velocity command is compared to the velocity
	feedback. If a deviation exists which exceeds this parameter, a fault is logged.
	Default value for Gen2 motors is 100 mm/sec. See fault: 502 Vel Tracking
No Enc VThrs PU	Visible only when NOT GEN2 machine (See "Motor Type")
	This parameter specifies the threshold for the total motor voltage at which a no
	encoder fault is reported. If the fault 529 No enc fdbck is reported, the encoder
	feedback was below 1mm/s and the motor voltage was above this threshold. The
	typical value and the default for Gen2 motors is 0.2PU, which is about 90 volts
	line-line motor voltage.
No enc flt t sec	Visible only when NOT GEN2 machine (See "Motor Type")
	This parameter specifies the time for which the encoder speed is below 1mm/s
	while a nonzero velocity reference is commanded to the drive. If this time is
	exceeded, the fault 530 No enc tmout is declared.
	The following settings are recommended:
	Geared: 0.6
	Gearless: 0.4
	The default value in the software is 0.4 seconds.
Vel Notch1 Hz	Visible only for Duty Type = 1
Vel Notch2 Hz	These parameters specify the center frequencies of two independent notch filters
	in the velocity loop used to attenuate a mechanical resonance outside the
	bandwidth of the velocity regulator. These notch filters can be disabled by setting
	these parameters to zero. The width of the notch is set by the parameter Notch
1	Band Hz

Notch Band Hz	Visible only for Duty Type = 1 This parameter specifies the width of the notch for the two notch filters in the
	velocity loop.
VelRate div 03	Visible only when "Encoder Type 0/1" = 0
	Specfies the rate of the encoder read and velocity calculation task.
	0 – 1kHz rate
	1 – 500Hz rate
	2 – 250Hz rate
	3 – 125Hz rate
Cnv Custom 0/1	Visible only for Regen Drives
	Specifies the control parameters for the converter current regulators.
	0 – The converter control parameters are set to default values. The
	following converter-specific SVT parameters are not visible.
	 The converter control parameters are set according to SVT
	parameters. The following converter-specific parameters in the SVT
	become visible and must be set.
Cnv Notch Hz	Visible only when "Cnv Custom $0/1 = 1$.
	Specifies the center frequency of a notch filter in the converter d & q current
	regulators. The width of the notch is 300 Hz and the depth of the notch is 10dB.
	The filter is used to attenuate any resonance that may occur on the AC mains in
	the frequency range 800 to 2300 Hz.
Cnv crf Depth	Visible only when "Cnv Custom $0/1 = 1$.
	Applicable only to HSOVF
	This is crfDepth for Converter Notch Filter in units of dB.
	The other Drives use "crfDepth = 10".
Cnv crf Width	Visible only when "Cnv Custom 0/1= 1. Applicable only to HSOVF
	This is crfWidth for Converter Notch Filter in units of Hz.
	The other Drives use "crfWidth = 300".
Cnv BW PU	Visible only when "Crv Custom 0/1= 1.
	This parameter adjusts the desired converter current regulator (displayed in the
	monitor menu BW(Hz):Cnv Inv) bandwidth. This parameter is usually 0.7 and
	should not be changed. This parameter becomes useful when the drive has to be
	used with a step up transformer and when it is necessary to use a notch filter
	Cnv Notch Hz for the converter.
Dc V BW Hz	Visible only when "Cnv Custom 0/1= 1.
	This parameter adjusts the desired dc bus voltage regulator bandwidth and it is
	set to 50Hz. This parameter becomes useful when the dc capacitor value is
	incorrect or out of tolerance.
Cnv L mH	Visible only when "Cnv Custom 0/1= 1.
	Unsaturated current regulator inductance
Cnv Saturation A	Visible only when "Cnv Custom 0/1= 1.
	Current level when line reactor saturation starts.
Cnv L Slope uH/A	Visible only when "Cnv Custom 0/1= 1.
	Line reactor inductance variation as a function of current.
Cnv R Ohm	Visible only when "Cnv Custom 0/1= 1.
	Current regulator resistance that controls disturbance rejection.
Cnv TmpObsrv T s	Visible only when "Cnv Custom 0/1= 1.
	Line Reactor temperature observer time constant.
Ploss Thr pre 🖇	Visible only when "Cnv Custom 0/1= 1.
	Specifies the power loss threshold as a percent of VA capability of the drive that
	is allowed during precharging. If the threshold is exceeded, the fault 208 Bus Cap
	Fail will be logged.

Ploss Thr idle %	Visible only when "Cnv Custom 0/1= 1. Specifies the power loss threshold as a percent of VA capability of the drive that is allowed during idle. If the threshold is exceeded, the fault 208 Bus Cap Fail will be logged.
Ploss Thr run %	Visible only when "Cnv Custom 0/1= 1. Specifies the power loss threshold as a percent of VA capability of the drive that is allowed during running (PWM active). If the threshold is exceeded, the fault 208 Bus Cap Fail will be logged.
Ploss Thrs Sng %	Visible only when "Cnv Custom 0/1= 1. Specifies the power loss threshold as a percent of VA capability of the drive that is allowed during running (PWM active) and the drive is connected to a single phase power supply. If the threshold is exceeded, the fault 208 Bus Cap Fail will be logged.
PLL freq band Hz	Visible only when "Cnv Custom 0/1" = 1. The phase-locked loop (PLL) in the software locks to the AC main frequency. Once locked, the PLL frequency is monitored to ensure that the frequency is within a tolerance band specified by this parameter (nominal frequency \pm tolerance band). If the frequency falls outside of this band for an amount of time greater than specified by the parameter PLL freq time ms, then the fault response is ESTOP. This helps prevent the car from continuing to run in case the OCB or AC line main disconnect is switched off during low-speed regenerative runs (otherwise the car could continue to run from the regenerative energy from the drive). See fault 307 PLL Freq Rng.
PLL freq time ms	Visible only when "Cnv Custom 0/1"= 1. If the PLL frequency falls outside of an allowed frequency band for a time greater than specified by this parameter, a PLL fault is triggered with ESTOP fault response. See fault 307 PLL Freq Rng.
Cnv Vmag Thrs PU	Visible Only for Regen Drives This parameter sets the threshold for the 212 Cnv Vmag Flt fault. The default value is 1.2.
Turnovr Delay ms	Visible only when "Interface Type" = 0,2,3,4 Specifies the amount of delay between fault detection and fault reaction during the turnover tests for the safeties. See Section 6.9.2 for more details.
VaneBias (10) mm	Visible only when "Interface Type" = 1 Offset in mm applied to all vane positions. Useful for adjusting the landing position after a learn run is performed.
Vane Hysteres mm	Visible only when "Interface Type" = 1 Hysteresis of PRS sensors, compensates overshoot in levelling. Example: Running down into ldg x, the car stops 8mm lower than when running up => Hysteresis 4mm. Note: Sensor hysteresis has same effect on levelling as regulator overshoot (see Pos fbk versus Pos ref in M-1-3). Ideally, regulator overshoot should be trimmed separately, e.g. by adjusting inertia.
Profile Delay ms	Visible only when "Interface Type" = 1 Specifies the amount of time that the profile will be delayed in Profile Mode and CAN Mode.
Relevel Delay ms	Visible only when "Interface Type" = 1 Used to suppress PRS signal glitches: A relevel run will only be started after the UIS/DIS signal has been off the vane for Relevel Delay ms.
Hover Enable 0/1	Visible only when "Interface Type" = 1 Enables hovering feature, i.e. holding the car at a landing with brake open.

Here a Demos Torra Torra	Visible onlywhen "Heyer Fredde 0/1"- 4
HoverRangeTopLdg	Visible only when "Hover Enable 0/1"= 1
	Top landing of range (starting at bottom=0) where hovering shall be performed.
Hover Min Time s	Visible only when "Hover Enable 0/1"= 1
	Minimum time to hover even in the absence of LW excitations. Time of potential Relevel runs is included.
Horrow Eado Out a	
Hover Fade Out s	Visible only when "Hover Enable 0/1"= 1
	Time to hover after an LW excitation, includes time spent on actual Relevel runs.
Hover delta LW %	Visible only when "Hover Enable 0/1"= 1
	Deviation of LW value from last latched value that shall establish an "LW
	excitation". When an excitation is detected, the current LW value is latched for
Hover Gain PU	detection of the next excitation. Units: % of duty load Visible only when "Hover Enable 0/1"= 1
HOVEL Gain PU	This is the outer velocity gain during hovering. Increasing this value may minimize
	the amount of car deflection in response to a large load step in the car. However,
	the tradeoff is that the damping will decrease, making the car more susceptible to
	bounce and/or vibration.
AHC Enable 0/1	Visible only when "Interface Type" = 1
	Enables the advanced hovering control feature (AHC), i.e. holding the car at a
	landing with brake open and reacting quickly to load changes by using a top of
	car encoder/sensor.
TOC Car Dir 0/1	Visible only when "AHC Enable 0/1"= 1
	This parameter sets the direction convention for the top of car encoder.
AHC Kp gain	Visible only when "AHC Enable 0/1"= 1
	This parameter sets the AHC position loop gain that minimizes the car position
	error. Typical value is 2.
AHC Kd gain	Visible only when "AHC Enable 0/1"= 1
	This parameter sets the AHC position loop gain that minimizes the car position
	initial deflection when there is a load transfer. Typical values are 1 or 2.
AHC Kd RedFactor	Visible only when "AHC Enable 0/1"= 1
	Enables the Kd gain scheduling feature for elevator systems where a single Kd
	value does not meet both the dynamic sag and damping requirements for all
	floors where Advanced Hovering Control (AHC) is active. This is the factor that
	reduces the AHC derivative gain Kd as a function of hoistway position. The
	higher the position, the lower the Kd value. A high Kd value is needed for near
	bottom floors to contain dynamic sag, and a lower Kd value is needed at higher
	floors to meet the damping requirements where AHC is still active. The parameter
	units are gain/0.1mm units. To defeat this feature, the default value of 0 should be used.
AHC Notch frq Hz	Visible only when "AHC Enable 0/1"= 1
	This parameter sets the AHC position loop notch filter frequency. Typical value is
	about 1.8 Hz.
AHC Ln Enc Th mm	Visible only when "AHC Enable 0/1"= 1
	This is the threshold for the "548 CarEncErr LR" warning fault management.
AHC Nm Enc Th mm	Visible only when "AHC Enable 0/1"= 1
	This is the threshold for the "547 CarEncErr NR" warning fault management.
	This threshold is compared to the difference between the top of car encoder and
	the machine encoder for a Normal Run. A typical value is 200 mm.
AHC Nm Enc Th mm	This threshold is compared to the difference between the top of car encoder and the machine encoder for a Learn Run. A typical value is 200 mm. Visible only when "AHC Enable 0/1"= 1 This is the threshold for the "547 CarEncErr NR" warning fault management. This threshold is compared to the difference between the top of car encoder and

AHC Enc/Vn Th mm	Visible only when "AHC Enable 0/1"= 1
	This is the threshold for the "549 AHC Enc/Vane" fault management. This
	threshold is compared to the amount of car motion as detected by the top of car
	encoder when the car leaves the "center vane" position. If the amount of car
	motion is less than or equal to this threshold when the car leaves the center vane
	position, then it is assumed that the top of car encoder is not properly tracking car
	motion, and this fault is declared. A typical value for this threshold is 0 mm.
Pos Stop Tol mm	Visible only when "Interface Type" = 1
	Specifies the position stopping tolerance that is used to decide the car has
	reached the target.
	See fault: 506 Stopping Err
Val Ctap mm/aca	Visible only when "Interface Type" = 1
Vel Stop mm/sec	
	Specifies the velocity stopping tolerance that is used to decide the car has
	reached the target.
	See fault: 506 Stopping Err
Overload sec	This parameter is used to 134inimum134n the overload protection and specifies
	the maximum time the drive is allowed to operate at the rated motor accelerating
	current. The rated motor accelerating current is determined by the SVT
	parameters Rated mtr i Arms and Rated 134inim PU:
	lacc,rated = Rated mtr i Arms x Rated 134inim PU
	where Rated mtr i Arms is the continuous rated current of the motor.
	When the actual motor current is lower than the rated motor accelerating current,
	the allowable time increases. The drive is allowed to run indefinitely when the
	actual operating current is at or below the rated motor current. The exact time
	allowed at any operating current can be calculated using the following formula:
	$I = \left[I_{accel}^{2} - I_{cont}^{2} \right]_{t}$ $i > I$
	$t = \left(\frac{I_{accel}^2 - I_{cont}^2}{i^2 - I_{cont}^2}\right) t_{ovl}, i > I_{cont}$
	(^t ^c ont)
	$t = \infty, i \leq I_{cont}$
	where
	I _{accel} = rated motor accelerating current, determined by:
	Rated mtr i Arms x Rated 134inim PU
	I _{cont} = continuous current rating of the motor (Arms), specified by service
	tool parameter Rated mtr i Arms.
	T_{ovl} = maximum time allowed to operate at the rated motor accelerating
	current and specified by SVT parameter Overload sec
	i = actual motor current (Arms)
	See fault: 109 Overload
Rated mtr i Arms	Visible only for Duty Type = 1
	This parameter is used to 134inimum134n the overload protection and specifies
	the continuous rated current of the motor in Arms. This is the rating at which the
	motor can operate indefinitely.
Rated 134inim	Visible only for Duty Type = 1
PU	This parameter is used to 134inimum134n the overload protection and specifies
	the rated accelerating current of the motor in per-unit of the rated motor current
	parameter Rated mtr i Arms. For example, if Rated mtr i Arms is set to 100 Arms
	and Rated 134inim PU is set to 1.67, then the rated accelerating current of the
	motor is 167 Arms.
L	

Inv I Limit %	Visible only for Duty Type = 1 Un-visible only for "JIS Function 0/1" = 1. In this case, you need to input the "Engineer Passwrd" to be visible. Also you can check this setting by F12 " I% IA IR% IRA " of SVT monitor. Specifies the current limit for the inverter as a percentage of the full scale current for the drive. This also determines the overcurrent trip level, which is set at 105% of the current limit. See fault: 100 Inv SW Oct
Cnv I Limit %	Visible for Regen Drives Only
	Specifies the current limit for the converter as a percentage of the full scale current for the drive. This also determines the overcurrent trip level, which is set at 105% of the current limit. See fault: 200 Cnv SW Oct
SX Pick Time ms	Visible only for Duty Type = 1
	Specifies the amount of time allowed for the S relays to settle into the proper pick state (ms). The PWM will not be activated until this time has expired, so this parameter extends the time for run preparation. This timer may have to be increased if external relays are used between the drive and the motor. See related faults: 403 Brake BY, 703 S Rly Fault, 704 DBD Fault.
Pos Corr Lim mm	Visible only when "Interface Type" = 1.
	Specifies the maximum position correction allowed every 1 ms period. This is used to reduce any vertical vibration that may occur due to a large position correction. Such a large correction can occur if the signal latency of the PRS is large enough and the speed is high enough. Best results are achieved when this parameter is set less than 0.1 mm.
Max Battery I A	Visible only for ARO Type > 1 or when Interface Type = 1
	This parameter specifies the maximum instantaneous battery current feedback (overcurrent threshold) allowed during ARO. The software default value is: 30 A – for EN ERO 55 A – for Optimized ARO, ARU1 and ARU2.
AroMRo Delay Sec	Visible only when "Interface Type" = 1
	This parameter controls the amount of delay before entering battery mode. It needs to be selected such that it allows the EMI capacitors in the drive to discharge sufficiently before connecting to the battery mode, i.e. dependent on drive type and controller. The delay time is communicated to the GECB that executes the delay -> see documentation of GECB/OpControl.
Vd out thresh PU	Visible only for Duty Type = 1
	D-axis current regulator output threshold when the brake is not lifted yet. This is used to detect failed current sensors or disconnected motor from the drive as a result of wiring errors or relays not working etc. See fault <u>111 No Id fdbk</u> . The current default in the software is 0.9. The recommended setting going forward is 0.5.

Id Thresh 400V	Visible only for Duty Type = 1 and ARO Type = 2 or 5.
	This parameter is used when battery operation is active and the DC bus
	overvoltage control is active.
	If DC BUS voltage is more than 400V within "CUR Limit T (sec)" with ARO, then the
	"Current Id" of motor is controlled by the drive.
	If DC BUS voltage became more than 400V, the "Current Id" has increment
	"Delta Id[A] /5ms" until "Max Id – 4 [A]".
	Then, if DC BUS voltage exceeded 600V , the "Current Id" has the increment
	"Delta Id[A] /5ms" until "Max Current Id".
	Then, if DC BUS voltage became less than 590V , the "Current Id" has the
	decrement "Delta Id[A] /5ms" until "3 [A]".
	Delta Id[A] = ("Id Thresh 400v (A)" –2) / 50
	$Defination[A] = (10 \text{ fittes in 400V}(A)^{-2}) / 30$
	Some logics of this function are reset at the beginning of every run.
Id Thresh 700V	Visible only for Duty Type = 1 and ARO Type = 2 or 5.
	This parameter is used when battery operation is active and the DC bus
	overvoltage control is active.
	If DC BUS voltage exceeded 700V, the "Current Id" has the increment "Delta Id[A]
	/5ms" until "Id Thresh 700V (A)".
	Delta Id[A] = ("Id Thresh 400v (A)" –2) / 50
	Come legion of this function are react at the heginning of every run
CUR Limit T(Sec)	Some logics of this function are reset at the beginning of every run. Visible only for Duty Type = 1 and ARO Type = 2 or 5.
COR LIMIC I (SEC)	This parameter is used when battery operation is active and the DC bus
	overvoltage control is active.
	See related parameter: Id Thresh 400V, Id Thresh 700V
DET SP MAX mm/s	Visible only for "JIS Function 0/1" = 1 or HSOVF drives.
	This parameter is used for shock detection.
	Start and stop Shock are detected during "Vel fbk < DET SP MAX mm/s".
ARO Vbus fil ms	Visible only for Duty Type = 1 and ARO Type = 2 or 5.
	A filter was added to ignore the dc cap fail fault detection for 200 ms after MX pick
	on transition from JIS ARO to normal. This is in addition to the existing filter to
	switch between high and low thresholds when MX picks. See related fault: 208
ABO V Elt Div c	Bus Cap Fail. Visible only for Duty Type = 1 and ARO Type = 2 or 5.
ARO V Flt Dly s	Specifies the filter time of detected "301 DC Bus Under" for ARO of 428G.
	(HSOVF_ARO)
	Detects the "301 DC Bus Under" if this filter time passes with a status under VDC
	threshold.
ARO Vbus Under %	Visible only for Duty Type = 1 and ARO Type = 2 or 5.
	Specifies the threshold of "301 DC Bus Under" for ARO of 428G. (HSOVF_ARO)
	Detects the "301 DC Bus Under" if VDC voltage is under this threshold during
	ARO.

Start Shock LVL%	Visible only for "JIS Function 0/1" = 1 or HSOVF drives.
	This parameter is used for "start shock" detection.
	"Shock flag" becomes "TRUE" with the following condition between the run start
	and "Vel fbk = DET SP MAX mm/s".
	"Absolute Inv Iq Diff [A]" > "Shock Threshold [A]"
	"Absolute Inv Iq Diff [A]" = "Inv Iq Ref_max" – "Inv Iq Ref_min"
	"Inv Iq Ref_max": Max of "Inv Iq Ref" during the term for Start Shock.
	"Inv Iq Ref_min": Min of "Inv Iq Ref" during the term for Start Shock.
	"Shock Threshold [A]" = "Rated Trq I A" x "Start Shock LVL%"
	Please see related fault 540 Shock Detect.
Stop Shock LVL%	Visible only for "JIS Function 0/1" = 1 or HSOVF drives.
	This parameter is used for "stop shock" detection.
	"Shock flag" becomes "TRUE" with the following condition between "Vel fbk =
	(DET SP MAX mm/s) x 0.9" and the run stoped in deceleration
	"Absolute Inv Iq Diff [A]" > "Shock Threshold [A]"
	"Absolute Inv Iq Diff [A]" = "Inv Iq Ref_max" – "Inv Iq Ref_min"
	"Inv Iq Ref_max": Max of "Inv Iq Ref" during the term for Stop Shock.
	"Inv Iq Ref_min": Min of "Inv Iq Ref" during the term for Stop Shock.
	"Shock Threshold [A]" = "Rated Trq I A" x "Stop Shock LVL%"
NINDO DAL- CAIN	Please see related fault 540 Shock Detect.
NIARO Pdiv GAIN	Visible only for ARO Type = 3. When the runs of NIARO with less than 700 (do were shanged from Normal run
	When the runs of NIARO with less than 700Vdc were changed from Normal run,
	the P Gain are adjusted by this parameter. If this parameter is set "2", the P Gain is one half of Normal P Gain.
Self Tune 0/1	Visible only when "Motor Type" = 901 and when Duty Type = 1
Serr rune 0/1	This parameter enables self-commissioning tests.
	0 - disable self-commissioning
	1 – enable self-commissioning
Vane Length mm	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	Vane length, same for all vanes, variance of 80mm tolerated and learned (LR).
UIS config 0/1/2	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	0 – UIS sensor does not exist in this configuration (GDCB input open)
	1 - UIS configured, position in "UIS offset mm" is above vane center
	2 - UIS configured, position in "UIS offset mm" is below vane center
UIS offset mm	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	Distance from vane center (= landing level) up/down to sensor position (when car
	is aligned with landing).
UIS NO=0 / NC=1	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	0 – UIS logic is "Normally Open", i.e. PRS output is closed (~24V) on vane
LV1 config 0/1/2	1 – UIS logic is "Normally Closed", i.e. PRS output is open (or 0V) on vane
LIVI COULLY U/1/2	Visible only when" Vane Sensor Type" = 99 (Custom PRS). LV1 configuration, corresponding to "UIS config 0/1/2"
LV1 offset mm	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
201 011000	LV1 offset, corresponding to "UIS offset mm"
LV1 NO=0 / NC=1	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	LV1 logic, corresponding to "UIS NO=0 / NC=1"
LV2 config 0/1/2	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	LV2 configuration, corresponding to "UIS config 0/1/2"
LV2 offset mm	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	LV2 offset, corresponding to "UIS offset mm"
1	

	Visible only when "Vene Core and Type" $= 00 (0.0000 \times 1000)$
LV2 NO=0 / NC=1	Visible only when" Vane Sensor Type" = 99 (Custom PRS). LV2 logic, corresponding to "UIS NO=0 / NC=1"
DIS config 0/1/2	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	DIS configuration, corresponding to "UIS config 0/1/2"
DIS offset mm	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	DIS offset, corresponding to "UIS offset mm"
DIS NO=0 / NC=1	Visible only when" Vane Sensor Type" = 99 (Custom PRS).
	DIS logic, corresponding to "UIS NO=0 / NC=1"
Custom HwCmp 0/1	Visible only when Interface Type = 1
_	This parameter enables customization of the PRS and hoistway compensation.
	0 – default compensation (usually sufficient)
	1 – customized, compensation tuned by factors below
	Note: Setting this flag to 0 resets all tuning factors below to 100%.
Latcy UisDisOn %	Visible only when "Custom HwCmp 0/1" = 1.
	Factor tuning the position feedback compensation for PRS signal latency of the
	UIS and DIS sensor moving onto a vane.
	Example 150% : At each speed, the respective compensation Δs is 1.5 times of
	what the default compensation would be> 0% disables compensation.
Latcy UisDisOff%	Visible only when "Custom HwCmp 0/1" = 1.
	Factor tuning the position feedback compensation for PRS signal latency of the
	UIS and DIS sensor moving off a vane> 0% disables compensation.
Latcy 1/2LV on %	Visible only when "Custom HwCmp 0/1" = 1.
_	Factor tuning the position feedback compensation for PRS signal latency of the
	1LV and 2LV sensor moving onto a vane> 0% disables compensation.
Latcy 1/2LV off%	Visible only when "Custom HwCmp 0/1" = 1.
-	Factor tuning the position feedback compensation for PRS signal latency of the
	1LV and 2LV sensor moving off a vane> 0% disables compensation.
RopeStrtch comp%	Visible only when "Custom HwCmp 0/1" = 1.
	Factor tuning the position feedback compensation for rope/belt stretch caused by
	acceleration/deceleration> 0% disables compensation.
HitchPress comp%	Visible only when "Custom HwCmp $0/1$ " = 1.
_	Factor tuning the position feedback compensation for hitch spring compression
	caused by acceleration/deceleration> 0% disables compensation.
Duty kg % of car	Visible only when "Custom HwCmp 0/1" = 1.
	Factor adapting the position feedback compensation for rope/belt stretch and
	hitch spring compression to the impact of the load in the car. This value is set to
	the percentage of duty load related to the mass of the empty car.
	Example: If empty car = 3200kg and duty load = 1600kg, this parameter should
	be set to Duty_kg % of car = 1600 / 3200 = 50% = 50
PWM dnsft I %	Visible only for Duty Type = 1
	This specifies the level of current, as a percentage of drive rated current, above
	which the PWM frequency of the inverter maybe downshifted by a factor of 2. In
	order to downshift, the motor frequency must also be less than the frequency
	specified by the parameter "PWM dnsftFreq Hz".
	Recommended values:
	= 60 for DRV_TYPE = 428
	= 76 for DRIVERAT = 416
	= 0 for DRV_TYPE = 460 and MOT_TYPE = 902
	= 1 for DRV_TYPE = 460 and not MOT_TYPE = 902
	= 100 for others

PWM dnsftFreq Hz Visible only for Duty Type = 1 This specifies the frequency below which the PWM frequency of the inverter maybe downshifted by a factor of 2. In order to downshift, the motor current must also be more than the level specified by the parameter "PWM dnsft I %".
To disable PWM downshifting altogether, set the parameter to zero. To allow PWM downshifting to be based only on the "PWM dnsft I %" parameter setting, set the "PWM dnsftFreq Hz" to 150.
Recommended values:
$= 60 \text{for DRV}_TYPE = 428$
= 5 for DRV_TYPE = 460 and MOT_TYPE = 902 = 2 for DRV TYPE = 460 and not MOT TYPE = 902
$= 2$ for DRV_TTPE = 460 and not NOT_TTPE = 902 = 150 for others
Inv NTSD Ilimit% Applicable only to OVF460G
The drive limit is extended to this setting during NTSD operation.
Default value = 88% = 850 Arms for 460 G
Original drive limit = 76% = 735Arms for 460G
Refer to the "Inv I Limit %".
ETSC Trip Vel % Applicable only to HSOVF
Velocity threshold for ETSC function.
SSB Trip Vel % Applicable only to HSOVF
Velocity threshold for SSB function. CZ Drop Time ms Applicable only to HSOVF
This is filtered time for Drop state of CZ Relay.
If CZ Drop state is passed this set time with Safety chain active, then "700 Safety
Chain" is logged.
HitchLw emptyBOT Applicable only when Load Weigh Type = 2.
Calibration value for interpreting hitch loadweighing data: This parameter allows
manual modification of the calibration. At bottom position with empty car, the hitch
load weighing device should send this value. The unit is kg. The actual value sen by the hitch load weighing device can be read using the menu Monitor-Motion, it
is the first value in the display "HitchLW: Empty: "
This parameter is learned automatically during a learn run if the display string
"Calibrate Hitch LoadW? $Y=1/n=0$ " is confirmed by 1.
HitchLw emptyTOP Applicable only when Load Weigh Type = 2.
Calibration value for interpreting hitch loadweighing data: This parameter allows
manual modification of the calibration. At top position with empty car, the hitch
load weighing device should send this value. The unit is kg. The actual value sen
by the hitch load weighing device can be read using the menu Monitor-Motion, it is the first value in the display "HitchLW: Empty: "
This parameter is learned automatically during a learn run if the display string
"Calibrate Hitch LoadW? $Y=1/n=0$ " is confirmed by 1.
HitchLw full BOT Applicable only when Load Weigh Type = 2.
Calibration value for interpreting hitch loadweighing data: This parameter allows
manual modification of the calibration. At bottom position with duty load, the hitch
load weighing device should send this value. The unit is kg. The actual value sen
by the hitch load weighing device can be read using the menu Monitor-Motion, it is the first value in the display "HitchLW: Empty: "
This parameter is learned automatically during a learn run if the display string

	-
HitchLw CaliDone	Applicable only when Load Weigh Type = 2. Enable/Disable the hitch load weighing calibration. If Load Weigh Type = 2 and HitchLw CaliDone = 0, the event message "915 LWSS not cal" is generated and the drive starts the run using default protorous ond "tight" velocity loop start.
	the drive starts the run using default pretorque and "tight" velocity loop start
	gains.
	This parameter is set automatically during a learn run if the display string "Calibrate Hitch LoadW? Y=1/n=0" is confirmed by 1.
Num LwSensorData	
Nulli LwSellSOIData	Applicable only when Load Weigh Type = 2.
	This parameter indicates the number of data for load weight sensor and is used for the detection of failure or slackening of suspension.
	This function is needed in Australian market when a system doesn't have any
	"Slack rope switch". But the system has to have a "Hitch Load Sensor "with "CAN
	interface". According to Australian code (EN81 Code), the Drive control should
	stop if some ropes have trouble or it is out of a Driving sheave. The drive checks
	load data from Hitch Load Sensor for each rope. If the load data is very low
	compared with Normal data, an event of 728 Slack Rope is detected. Then the
	elevator is not able to run until serviced by engineer. Only the Inspection running
	is allowed for rescue operation even if the "Slack rope" is not solved.
	This function is enabled by the parameter Num LwSensorData:
	0: slack rope detection disabled .
	1-8: slack rope detection enabled.
Remote Auth min	The drive has multiple levels of service tool feature access. The access level of
	the tool the user has connected to the drive determines the access level that will
	be granted to the user. The only exception is when a remote administrator
	temporarily raises the access level of the drive to L2, allowing a user with a L1
	tool connected locally in the machine room to gain L2 access.
	This parameter is the "Remote Authentication Timer". When the timer is nonzero,
	the access level is increased from level 1 to level 2. The timer default is zero. The
	timer can be set non-zero only by admin access level. Its range is limited 0 to
	65535 min (approximately 45 days). The timer is visible by level 2 access and
	can be lowered or cleared by L2 access.
MaskOut Warning1	Event number to be masked out of the event log. Setting this parameter to 0
	means "no events to be masked out". Only selected events of the response types
	INFO and WARN can be masked out, see event description. Non-maskable
	events will not be accepted by the input menu of this parameter. If this parameter
	is non-zero, the event log will display "Filter is on!" as its first entry. The filter
	created by this parameter is effective only for future events, not for events already
	stored when the parameter is set.
	If MaskOut Warning1:= 0, the parameter MaskOut Warning2 is cleared
MaskOut Warning2	(=0) and hidden.
Maskout Warning2	Event number to be masked out of event log, analog to MaskOut Warning1.
	If MaskOut Warning1:= 0, this parameter is cleared (=0) and hidden.
Fan Duty Idle %	Visible only when "Interface Type" = 1 and drive OVFR02A-412 detected
	For LVA – GeN2 Premier at 3 & 3.5 m/s the drive is installed in the hoistway. The
	noise of the fan during idle can be reduced by reducing the fan PWM duty.

6.7.3 3-3 BRAKE	
SVT Display	Description
BRK TRQ %Load1	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	Sets this parameter for load in percent
	100%:Duty load in car is 100%
	ICD: Interface Type=3 Drive Command(DC2) Bit3=0
	OPB: DriveBtiControlCommand > BtiParameter: bit0 = 0
BRK TRQ %Load2	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	Sets this parameter for load in percent
	100% :Duty load in car is 100%
	ICD: Interface Type=3 Drive Command(DC2) Bit3=1
	OPB: DriveBtiControlCommand > BtiParameter: bit0 = 1
In Car noLoad kg	Sets a threshold of "noload in car" to perform the BTI test
	Min: 80, Max: 200
Self BTI Block	Sets Enable or Disable of Self-BTI test
	0: Normal setting (Enabled Self-BTI)
	1: Disable Self-BTI
	2: Blocked Self-BTI (Cannot change this parameter until canceled)
	** This Block is canceled only for good result of Manual BTI test or special
	command required. After Block canled, this parameter is automatically change
	from "2" to "0".
Check Unbalance	Uses a calculation value of unbalance load in BTI test
	0: Disable , 1: Enable
	Recommendation is to adjust the unbalance load manually by "unbalance load
	adjustment" with no-load condition before Self-BTI implemented.
	Then this function is set to disable "0".
	See 6.9.5 How to check the balanced load? (For PM machine)
Lockup by S-BTI	Sets Enable or Disable of lockup operation for Self-BTI test
	0: Disble , 1 : Enable
	For Enable: If the self-BTI test result is not good, the drive blockany attemps run
	except TCI/ERO operation.
Brk DelayTime ms	Sets a threshold value of Brake Delay Detection.
	0: Disable (This value is 0 automatically if it is set to less than 1499)
	Min: 1500, Max:10000
	(This value has to be set to 1500 for JIS application)
BrkTrqOffset kgm	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	Correction data for Iq_reference of "Brake maintained torque"
BRK TRQ Trim %	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	This is the parameter to adjust a condition of the job site.
	The default value is 100%.
	Min: 50 , Max : 150
ZERO SPEED2 mm/s	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	The threshold to detect the motor running
RATE BRK TRQ kgm	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	"Brake maintained torque" of 100% load when JIS Option Mode is set to "98" as
	test mode.

BRK TRQ MODE	Visible only for when brake torque test is active
	This parameter is used only for Brake Maintenance Test.
	0 :System test
	1 :Only Motor test, not system
BCM present 0/1	Applicable only to HSOVF
	0: Not used for the Brake Control Module
	1: Brake PWM control is enable
Int Brk Type 0-4	Visible only for drive types with internal brake control capability.
	Specifies which brake control to use:
	0 – external brake module used
	1 – internal brake control circuit used
	2 – internal closed-loop PWM brake control circuit used (416CR)
	3 – RESERVED
	4 – Voltage control (open-loop PWM with Pick/Hold) for BPCB (416CR)
	The brake current can be monitored in the service tool with the display parameter
	Brake Current A.

Brk Sw Type 0-6	Visible only when NOT GEN2 machine (See "Motor Type") Specifies the type of brake switches present: 0 – brake switches not present, requires BS1= Gnd, BS2=Gnd. 1 – 2 brake switches present 2 – 2 brake switches present, with inverted signals 3 – 3 brake switches present working to 2 inputs BS1 and BS2:
	24V+ °S1
	SX 7
	BS2 0
	sx
	вх
	BS1
	BS2
	4 – Brake switches not present, requires BS1=Gnd, BS2=+24V. Some PMSM machines & brakes are designed to work safe without brake switch monitoring (e.g. REIVAJ PMSM machines). To prevent that a different motor type is operated without brake switches, a separate brake switch type has been created with a fixed input configuration. This input configuration is used to ensure that the correct motor type is connected to the controller. In case of a different wiring the drive software does not allow the motor to run.
	 5 - BS1 = Normally close contact, BS2 = Normally open contact Applicable for 41T machine A - BS1 = Normally close contact, BS2 = Always closed contact Applicable for the brake test of 41T machine In this case, a brake is compulsorily being opened with opening bolt.
	See fault 400 Brake S1 SAS.

Brk Pick Time ms	Visible only for Duty Type = 1
	Specifies the time allowed for the brake switches to settle into the proper pick
	state (ms) (beginning with the command to pick). This parameter must be set
	greater than the actual brake pick time plus the time allowed for brake switch
	debouncing as specified by the setup parameter Brk Lftd Dely ms.
	See fault 400 Brake S1 SAS.
Brk Setl Time ms	Visible only for Duty Type = 1
	Time allowed for brake switches to settle into proper drop state (ms).
	See fault 400 Brake S1 SAS.
Lft Brk Delay ms	Visible only for Duty Type = 1
	Time to delay lift brake command to allow for pre-torquing (ms).
Brk Lftd Dely ms	Visible only to systems that have brake switches, i.e., "Brk Sw Type 0-6" is
	set to 1, 2, or 3. For each switch, this parameter specifies the amount of
	debounce for the brake switch signal during brake pick. The default value is
	30ms. "Brake Lifted" will not become TRUE until after the debounce time.
	For slowly picking brakes, the parameter value can be increased to allow time for
	the brake to fully pick before the drive declares the brake is lifted and advances
	the state machine. Note that if this parameter value is increased, the
	corresponding parameter Brk Pick Time ms may also have to be increased
	accordingly.
	For the brake drop, the debounce value is fixed at 30ms and is not adjustable.
Brk ramp up t ms	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
± ±	"Int Brk Type 0-4 = 2"
	The amount of time taken to ramp the brake current to the pick current.
Brk ramp dn t ms	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	The time for ramp down of brake current from hold current to zero.
Brk hold Dely ms	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Time to hold the "brake pick current" after "Brake Lifted".
Brk Pick A	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	This is the current used to lift the brake. This current is reached during the break ramp time before the current is switched to the Brake hold current.
Brk Pick %	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
DIK FICK 5	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Threshold to shift from pick current to Hold current. If Brake current feedback is
	over this threshold, the Brake control is moved to Hold current.
Brk Hold A	Applicable only for "234, 428 or 460 drives" and "BCM present $0/1 = 1$ " or
	"Int Brk Type $0.4 = 2$ "
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	The hold current for the brake. This is the current that is used to hold the brake in
	the lifted position.
Brk Drop %	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	When ramping down and the DSP to current feedback reaches this value, drop
	the brake contactor.

Brk Bus OVT %	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" Trip point set as percentage of brake pick current to declare a Brake bus
	overvoltage fault.
Brk OCT A	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
DIK OCI A	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Trip point set as feedback current to declare a Brake current over fault.
Brk Bus UVT %	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1"
	Trip point set as percentage of brake pick current to declare a Brake bus
	undervoltage fault.
Brk Nom DC V	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	The nominal voltage on the brake DC link. This value is a result of the input AC
	line voltage and the ratio of the brake transformer. This parameter is used to
	scale the gains in the brake current regulator.
Brk dcv fscale V	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1"
	When the inside of the DSP carries out an operation, brake bus voltage full scale.
Brk Crr fscale A	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1"
DIK CII ISCAIE A	
	When the inside of the DSP carries out an operation, current full scale.
Brk R ohm	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Brake resistance value in ohms.
Brk L H	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Brake inductance value in henry.
Brk I bw pick Hz	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Bandwidth for Brake PI control during picking or dropping brake
Brk I bw hold Hz	Applicable only for "234, 428 or 460 drives" and "BCM present 0/1 = 1" or
	"Int Brk Type 0-4 = 2"
	Un-visible for when Motor Type is set to 711-716/PM138 or 731-734/PM30T
	or 723-727/BOMCO3.
	Bandwidth for Brake PI control during holding brake
Brk War Det Cnt	Visible only when "Interface Type" = 1 and "JIS Function 0/1" = 1
	When the "420 Bk Dly DetW" was detected, the Drive moves to the IDLE state.
	The drive repeats a re-try running with the cycle of this parameter value.
Brk Pick V 🖇	Visible only when "Int Brk Type 0-4" = 4
DIVITOV A 9	This specifies the pick voltage in % when brake control is open loop voltage PWM
	control "Int Brk Type $0.4 = 4$.
Drk Hold V	Visible only when "Int Brk Type 0-4" = 4
Brk Hold V %	
	This specifies the hold voltage in % when brake control is open loop voltage PWM
	control "Int Brk Type 0-4 = 4.

Sequenced Brk0/1	Visible only when "Interface Type" = 1 and drive OVFR02A-412 detected For LVA – GeN2 Premier at 3 & 3.5 m/s with machines TAA20220AT41 or TAA20220AT43 ("Motor Type " = 511): The additional Soft Brake Snubber Board switches diodes to one or both brake coil circuits to avoid passenger discomfort after ES. The control of the SBSB is done depending on the load via the 24V I/O P5.5 and P6.6.
	"Sequenced Brk0/1" = 0: Only Pick/Hold for the brake, no sequenced braking "Sequenced Brk0/1" = 1: Pick/Hold and sequenced braking are enabled.
SBSB Vel mm/s	Visible only when "Sequenced Brk0/1" = 1
	The sequenced braking is only enabled at normal runs above this speed.
	Otherwise both diodes are disabled.
SBSB Motor Trq %	Visible only when "Sequenced Brk0/1" = 1
	Additional diodes are switched to both brake coil circuits if the motor torque
	current at start exceeds this limit.
SBSB Regen Trq %	Visible only when "Sequenced Brk0/1" = 1
	One diode is switched to one brake coil circuit if the motor torque current at start exceeds this limit. Otherwise both diodes are disabled.

6.7.4 3-4 MACHINE

The following parameters are visible only when parameter **Motor Type** is set to 901 or 902. These parameters are used only if the motor is not included in the list of predefined motors in Section 9. If **Motor Type** is NOT set to 901 or 902, these parameters are automatically set according to predefined motors in Section 9 and cannot be modified.

SVT Display	Description
Mtr Shft Pwr kW	Visible only when "Self Tune 0/1" = 1
	This parameter is used when the drive is in self-tune mode only. Enter the motor
	power in kilowatts shown on the motor nameplate.
Rtd Mtr Spd RPM	Visible only when "Self Tune 0/1" = 1
	This parameter is used when the drive is in self-tune mode only. Enter the rated
	motor speed in rpm shown on the motor nameplate. Do not enter the contract
	rpm.
Rtd Mtr Ln-Ln V	Visible only when "Self Tune 0/1" = 1
	This parameter is used when the drive is in self-tune mode only. Enter the rated
	motor voltage shown on the motor nameplate.
Rtd Mtr I rms	Visible only when "Self Tune 0/1" = 1
	This parameter is used to calculated rated magnetizing and rated torque current
	in case the measurement-based calculation fails.
Rtd Mtr Freq Hz	Visible only when "Self Tune 0/1" = 1
	This parameter is used when the drive is in self-tune mode only. Enter the rated
	motor frequency in Hertz shown on the motor nameplate.
LR Ampl KP/Ki PU	Visible only when "Self Tune 0/1" = 1
	Parameter used by self-commissioning. This limits the drive current during the
	locked-rotor Kp and Ki portion of the self commissioning tests. This value
	should be set to 0.2, which corresponds to 20% of the rated drive current.
LR Ampl RTC PU	Visible only when "Self Tune 0/1" = 1
	Parameter used by self-commissioning. This limits the drive current during the
	locked-rotor RTC portion of the self commissioning tests. This value should be
	set to 0.35, which corresponds to 35% of the rated drive current.

ttr Lsigma mH Visible only when "Self Tune 0/1" = 1 This parameter is used when the drive is in self-tune mode only. Enter the motor transient inductance (L_) if known. If not known, enter 0.001. The drive will determine this value during the self-commissioning tests Self Tune Config Visible only when "Self Tune 0/1" = 1 This parameter should be used after consultation with engineering. This parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedencee 3 - determine locked rotor RTC using imaginary impedence and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration potion of the run. Low Volt Op 0/1 OUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when "Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Geared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter to 1 enables a modification to the pretorque in which
transient inductance (L ₀) if known. If not known, enter 0.001. The drive will determine this value during the self-commissioning tests Visible only when "Self Tune 0/1" = 1 This parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter stee the self tune test configuration and specifies which tests will run. 0 – default test configuration; determines locked rotor RTC using real impedence. 1 – enable frequency sweep test during locked rotor test 2 – determine locked rotor RTC using <i>imaginary</i> impedencee 3 – determine locked rotor RTC using <i>imaginary</i> impedencee 3 – determine locked rotor RTC using <i>imaginary</i> impedencee and enable frequency sweep test 4 – Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Wull Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when "Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC buts to the rectified AC line voltage operation for modernization disabled. 1 – Low voltage operation for modernization disabled. 1 – Low voltage operation for modernization in CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Visible only when "Motor Type" = 901 or 902
determine this value during the self-commissioning tests Self Tune Config Visible only when "Self Tune 0/1" = 1 This parameter should only be used after consultation with engineering. This parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Cow Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage operation for modernization disabled. 1 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization to the pretorque is scaled by the parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%"
Self Tune Config Visible only when "Self Tune 0/1" = 1 This parameter should only be used after consultation with engineering. This parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece 4 - Determine locked rotor RTC using imaginary impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage operation for modernization enabled. 1 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization is Albaned. 2 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization albaned. 3 - Low voltage operation for modernization disabled. 1 - Low voltage operation for m
This parameter should only be used after consultation with engineering. This parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedence 3 - determine locked rotor RTC using imaginary impedence 3 - determine locked rotor RTC using imaginary impedence and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. Wisible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the pa
 parameter should be used only if the default settings for self commissioning fail or result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. - default test configuration; determines locked rotor RTC using real impedence.
result in unsatisfactory results. This parameter sets the self tune test configuration and specifies which tests will run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PVM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization and that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque is a count for non-linearities in certain worm-gear machine. tumber of Poles Visible only when" Motor Type" = 901 or 902
This parameter sets the self tune test configuration and specifies which tests will run.0 - default test configuration; determines locked rotor RTC using real impedence.1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedencee 3 - determine locked rotor RTC using imaginary impedencee and enable frequency sweep test4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run.Low Volt Op 0/1QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PVM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extermely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to eadjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.tumber of PolesVisible only when" Motor Type" = 901 or 902
run. 0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. Seared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque is caled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-linearities in certain worm-gear machine.
0 - default test configuration; determines locked rotor RTC using real impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using imaginary impedenece 3 - determine locked rotor RTC using imaginary impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when "Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization enabled. 1 - Low voltage operation for modernization enabled. 1 - Low voltage operation for modernization in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-linearities in certain worm-gear machine. Number of Poles Visible only when" Motor Type" = 901 or 902
impedence. 1 - enable frequency sweep test during locked rotor test 2 - determine locked rotor RTC using <i>imaginary</i> impedencee 3 - determine locked rotor RTC using <i>imaginary</i> impedencee and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when "Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. 1 - Low voltage operation for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Wumber of Poles Visible only when "Motor Type" = 901 or 902
2 - determine locked rotor RTC using <i>imaginary</i> impedence: 3 - determine locked rotor RTC using <i>imaginary</i> impedence and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. Seared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Wumber of Poles Visible only when" Motor Type" = 901 or 902
2 - determine locked rotor RTC using <i>imaginary</i> impedence: 3 - determine locked rotor RTC using <i>imaginary</i> impedence and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. 1 - Low voltage operation for modernization sin China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Wumber of Poles Visible only when" Motor Type" = 901 or 902
3 - determine locked rotor RTC using <i>imaginary</i> impedenece and enable frequency sweep test 4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Low Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization sin China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs to account for non-linearities in certain worm-gear machine. Number of Poles Visible only when" Motor Type" = 901 or 902
frequency sweep test4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run.Low Volt Op 0/1QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Wumber of PolesVisible only when" Motor Type" = 901 or 902
4 - Determine inertia using only speed criteria (speed > ½ rated speed). Otherwise, the default for the inertia test is to use only the deceleration portion of the run. Cow Volt Op 0/1 QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. Geared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Number of Poles Visible only when" Motor Type" = 901 or 902
Otherwise, the default for the inertia test is to use only the deceleration portion of the run.Low Volt Op 0/1QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Wumber of PolesVisible only when" Motor Type" = 901 or 902
Low Volt Op 0/1QUALIFIED FOR USE WITH LCRD 403 AND 404 ONLY. Visible only when" Motor Type" = 901 or 902 Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
Visible only when" Motor Type" = 901 or 902Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled.
Specifies that the motor is a low voltage motor as typically found in modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 – Low voltage operation for modernization disabled. 1 – Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
modernization. When set to 1, the converter regulates the DC bus to the rectified AC line voltage and sets the PWM frequency to 8KHz. 0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
AC line voltage and sets the PWM frequency to 8KHz. 0 – Low voltage operation for modernization disabled. 1 – Low voltage operation for modernization enabled.Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
0 - Low voltage operation for modernization disabled. 1 - Low voltage operation for modernization enabled. Geared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque is scaled by the parameter "Pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine. Jumber of Poles Visible only when" Motor Type" = 901 or 902
I - Low voltage operation for modernization enabled. Geared StrJR 0/1 Visible only when" Motor Type" = 901 or 902 and Interface Type = 1. This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems. Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque is a count for non-linearities in certain worm-gear machine. Jumber of Poles Visible only when" Motor Type" = 901 or 902
Geared StrJR 0/1Visible only when" Motor Type" = 901 or 902 and Interface Type = 1.This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
This parameter is set to 1 only for certain geared applications in China that have extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque is scaled by the parameter to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
extremely low gear box efficiencies, and works only for CAN based systems, but not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
not 422 based systems.Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Jumber of PolesVisible only when" Motor Type" = 901 or 902
Setting this parameter to 1 enables a modification to the pretorque in which the pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.
pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
pretorque is scaled by the parameter "Pretorque Trim2%" for regenerative runs only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
only. For non-regenerative runs, the pretorque is scaled by the parameter "Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
"Pretorque Trim %". This allows pretorque to be adjusted in a non-linear fashion to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
to account for non-linearities in certain worm-gear machine.Number of PolesVisible only when" Motor Type" = 901 or 902
Jumber of Poles Visible only when" Motor Type" = 901 or 902
Specifies the number of pales of the motor
Specifies the number of poles of the motor.
Rated Trq Nm Visible only when" Motor Type" = 901 or 902
Specifies the torque produced by the motor at the rated torque current (and rated
magnetizing current when using an induction motor).
Rated Trq I A Visible only when" Motor Type" = 901 or 902
Rated torque current (peak value).
Specifies the transient inductance in the d-axis of the motor, including any filter
inductance. The value represents the per-phase equivalent circuit of the motor
and filter.
mH Visible only when" Motor Type" = 901 or 902
Specifies the bulk inductance in the q-axis of the motor. For induction motors, Ld
should be set equal to Lq.

R Ohm	Visible only when " Motor Type" = 901 or 902 Specifies the equivalent resistance of the motor including any filter resistance. This parameter is used to set the integral gain of the current regulators, and should be adjusted to achieve desired performance of the regulators.
T/A Slope %	Visible only when" Motor Type" = 902 This parameter and the next are used to achieve the maximum torque per amp in a PM motor by modifying the d-axis current reference as a function of q-axis current. This achieves higher motor efficiency. The parameter specifies the percentage change in d-axis current per unit change of q-axis current. The equations are: $I_{d} = -\frac{TA_{slope}}{100} (I_{q} - TA_{offset}) I_{q} > TA_{offset} $
	$\begin{aligned} & 100 $
	To disable this feature, set this parameter to zero.
T/A Offset A	Visible only when " Motor Type" = 902 See previous parameter. This parameter specifies the amount of q-axis current below which d-axis current is zero.
Kt Slope 1/kNm	Visible only when" Motor Type" = 902
	This parameter is used to modify the torque gain of the inner velocity loop. This accounts for the change in the actual torque gain of the machine during field weakening to ensure consistent velocity loop performance. The parameter specifies the amount of change in the d-axis current (defined in A) per unit change in the inverse of the torque constant (defined in A/kNm). The reason that the units is in A per kNtm is due to the fact that this parameters tends to be small to be able to enter from the SVT. To disable this feature, set this parameter to zero.
Id Saturation A	Visible only when" Motor Type" = 902 This parameter specifies the negative d-axis current level at which the d-axis motor inductance begins to saturate. Below this current level, the inductance is treated as constant and is specified by the parameter: Ld mH
Iq Saturation A	Visible only when " Motor Type" = 902 This parameter specifies the absolute q-axis current level at which the q-axis motor inductance begins to saturate. Below this absolute current level, the inductance is treated as constant and is specified by the bulk inductance parameter: Lq mH
Ld Slope mH/A	Visible only when" Motor Type" = 902 and "Drive Type" is NOT 428 and 460. This parameter is used to modify the proportional gain of the d-axis current regulator. This accounts for the change in the actual inductance of the machine due to saturation of the motor iron to ensure consistent current regulator performance. This parameter specifies the reduction in inductance per unit increase in d-axis current. To disable this feature, set this parameter to zero.
Lq Slope mH/A	Visible only when" Motor Type" = 902 and "Drive Type" is NOT 428 and 460. This parameter is similar to the previous parameter, except it applies to the q-axis instead of the d-axis of the motor.

Ld Slope uH/A	Visible only when " Motor Type" = 902 and "Drive Type" = 234, 428 or 460. This parameter is used to modify the proportional gain of the d-axis current regulator. This accounts for the change in the actual inductance of the machine due to saturation of the motor iron to ensure consistent current regulator performance. This parameter specifies the reduction in inductance per unit increase in d-axis current. To disable this feature, set this parameter to zero.
Lq Slope uH/A	Visible only when " Motor Type" = 902 and "Drive Type" = 234, 428 or 460. This parameter is similar to the previous parameter, except it applies to the q-axis instead of the d-axis of the motor.
LqO mH	Visible only when " Motor Type" = 902 The parameters Lq0, Lq1 and Lq2 affect the accuracy of the encoder position error fault management only. These parameters are coefficients of a polynomial curve fit of the q-axis bulk inductance, which is used to calculate the q-axis bulk inductance value of the motor at a given operating point. The resulting q-axis bulk inductance is used as an input to the Secondary Magnet Position estimator, which is used to detect encoder slip. If these parameter values are not known, then set Lq0 = Lq, and set Lq1 = Lq2 = 0. This makes the bulk inductance equal to the nominal value of incremental inductance Lq. See related fault detection: 504 Enc Pos Err.
Lq1 1/mA	See previous parameter.
Lq2 1/mA^2	See previous parameter.
Ld0 mH	Visible only when" Motor Type" = 902
	The parameter Ld0 is used to tune the field weakening motor voltage regulator. It is important this value is correct to guarantee that the drive can provide the necessary bandwidth in controlling the motor voltage as a result of back emf due to magnets and resistive voltage drop due to currents. Set Ld0 = Ld if the exact value is not known.
Rated Mag I A	Visible only when " Motor Type" = 901 Specifies the rated magnetizing current when using an induction motor (peak value, not RMS).
Peak Mag I A	Visible only when" Motor Type" = 901 Specifies the peak value (not RMS) to which the d-axis magnetizing current is ramped during magnetization when using an induction motor. If this parameter is set larger than the rated magnetizing current, then fast fluxing of the motor occurs. Once the motor is fluxed, the magnetizing current is ramped down to the rated magnetizing current. As this parameter is increased, flux time decreases (hence "fast fluxing") which may improve elevator flight time. If this parameter is equal to or smaller than the rated magnetizing current, then fast fluxing does not occur and the magnetizing current simply ramps up to the rated magnetizing current.
Rtr Time Const s	Visible only when" Motor Type" = 901
Max Flux time s	Specifies the rotor time constant in seconds when using an induction motor. Visible only when" Motor Type" = 901(Induction Motor) This parameter sets the time which returns RTR. The Pre-torque should be secured till brake is opened. There is possibility that the vibration originates in the time of the start when the time is short.

Rated Motor rpm	Visible only when" Motor Type" = 901 or 902
	Specifies the true rated rpm of the motor independent of a particular elevator
	application. This parameter is used to set the velocity threshold for the "504 Enc
	Pos Err" fault management. This fault management becomes active when either
	the velocity command or the velocity feedback is greater than 30% of this
	parameter setting. For future software releases, this parameter will also be used
	for a self-commissioning feature for both induction and PM motors.
	See fault: 504 Enc Pos
	See EEPROM parameter: Mag err thr eDeg
Mag orr thr obog	See display parameter: MagErr1 MagErr2 Visible only when" Motor Type" = 902
Mag err thr eDeg	
	This parameter specifies the allowable difference between the magnet position
	derived from the encoder and the result of the Locked Rotor Test (LRT), and the
	estimated position of the magnets based on the back-EMF of the motor. See fault: 504 Enc Pos
	See display parameter: MagErr1 MagErr2 See EEPROM parameter: Rated Motor rpm
LRT AC Level PU	Visible only when" Motor Type" = 902
TIVE TEVET LO	Specifies the AC current offset to be used during the Locked Rotor Test (LRT). It
	is specified in per unit of the rated motor torque (Rated Trq I A). It is subject to a
	minimum of 4% of the full-scale current of the drive (see Drive Type).
ARD LRT AC LV PU	Visible only when" Motor Type" = 902
	Specifies the AC current offset to be used during the Locked Rotor Test (LRT)
	during ARD. It is specified in per unit of the rated motor torque (Rated Trq I A).
	During ARD operation with the 60A and 120A drives, the drive cannot operate the
	ARD function. This is because the LRT AC level is too high during the ARD
	operation. The ARD LRT AC level parameter can change the LRT AC level to a
	smaller value than the default LRT AC Level value. Then the ARD operation can
	start without any power issue in ARD system.
LRT DC Level PU	Visible only for PM motors.
	Specifies the DC current offset to be used during the Locked Rotor Test (LRT). It
	is specified in per unit of the rated motor torque (Rated Trq I A). It is subject to a
	minimum of 4% of the full-scale current of the drive (see Drive Type).
LRT mot err eDeg	Visible only for PM motors.
	During the locked rotor test to ensure the brake is dropped, there is a minimum
	allowable variation that the encoder can move. This is specified in electrical
	degrees with this parameter. This could occur when the brake is loose or when
	the locked rotor test current is producing significant torque as a result of
	unmatched brake-motor combination.
	If the minimum is exceeded, the fault 503 LRT Motion will be logged.
Fld Wkn Lvl %	The Field Weakening Controller (FWC) is a voltage regulator that allows higher
	motor speeds without exceeding maximum sinusoidal inverter output voltage and
	is applicable to PM motors only. This parameter specifies the voltage level at
	which the FWC begins to dictate negative d-axis current. This parameter is a
	percentage of the maximum sinusoidal output voltage, which is equal to the bus
	voltage divided by sqrt(2) minus some small voltage drops due to the impedance
	of the IGBTs (line-to-line rms). This parameter is typically set to 100, which
	equals a 513 V line-to-line rms drive output. To disable the FWC, set this
	parameter to 200.

Eld Min DM U-	Visible only for DM meters
Fld Wkn BW Hz	Visible only for PM motors. The Field Weakening Controller (FWC) is a voltage regulator that allows higher motor speeds without exceeding maximum sinusoidal inverter output voltage and is applicable to PM motors only. This parameter specifies the bandwidth of this regulator. This parameter is set typically to 10 Hz, but may be lowered down to about 2.5 Hz for certain motor applications with a low electrical frequency depending on 151inimum151nce.
Inv Hrmnc On 0/1	Visible only for PM motors.
	This parameter turns the inverter 6 th harmonic inverter current regulator for the PM machine. The default is turned off as a comprehensive tuning process is needed if deemed necessary. The parameter for all predefined motor types is turned off except motor type 104 (Date 5/21/2010). In the feature it can be turned on if the tuning is done for the specific motor. It is suggested to be set to 0 If the user defined motor 902 is used.
Inv Hrmnc dS %	Visible only for PM motors and the Inv Hrmnc On 0/1 is set to 1.
	This defines the amount of d axis current in phase with the magnet position as percentage of torque current reference. Note that negative values indicates 180 degrees phase shift to allow greater tuning flexibility.
Inv Hrmnc dC %	Visible only for PM motors and the Inv Hrmnc On 0/1 is set to 1. This defines the amount of d axis current in quadrature with the magnet position as percentage of torque current reference. Note that negative values indicates 180 degrees phase shift to allow greater tuning flexibility.
Inv Hrmnc qS %	Visible only for PM motors and the Inv Hrmnc On 0/1 is set to 1. This defines the amount of q axis current in phase with the magnet position as percentage of torque current reference. Note that negative values indicates 180 degrees phase shift to allow greater tuning flexibility.
Inv Hrmnc qC %	Visible only for PM motors and the Inv Hrmnc On 0/1 is set to 1. This defines the amount of q axis current in quadrate with the magnet position as percentage of torque current reference. Note that negative values indicates 180 degrees phase shift to allow greater tuning flexibility.

6.7.5 3-5 PROFILE

SVT Display	Description
Man Speed mm/s	Visible only when "Interface Type" = 0,2,3,4
	Speed during manual mode operation.
Man Acc mm/s2	Visible only when "Interface Type" = 0,2,3,4
	Acceleration during manual mode operation.
Man Dec mm/s2	Visible only when "Interface Type" = 0,2,3,4
	Deceleration during manual mode operation.
Insp Speed mm/s	Visible only when "Interface Type" = 1
	Speed at inspection run.
	Note: Value may be changed to 300 by the system's auto-installation routines.
	Note: Insp speed traveling towards the end of the hoistway within an LS is limited to 0.15m/s:
	 For the complete length of the LS if position is invalid.
	 For the last 2m before the terminal landing if position is valid.
Nom Speed mm/s	Visible only when "Interface Type" = 1
	Nominal speed.
	Note: this automatically sets "Corr Speed mm/s" when changed, except for JIS.
	Note: If "TwoStepSpeed 0/1" = 1, this parameter is used increased speed(High
	speed)
Accel mm/s2	Visible only when "Interface Type" = 1
	Nominal acceleration rate.

Decel mm/s2	Visible only when "Interface Type" = 1 Nominal deceleration rate.
Min Tdecel mm/s2	Visible only when "Interface Type" = 1
MIII Idecei Iuli/ Sz	Minimum timed deceleration slope. It is used in the NTSD check or as timed
	decel fault reaction if "Min Tdecel mm/2" > (115%*"Decel mm/s2"), otherwise
	115%*"Decel mm/s2" is used. Adjusting "Min Tdecel mm/2" > (115%*"Decel
	mm/s2") helps to get shorter LS length and faster failure reaction than with
	regular profile, at the cost of increased drive/motor current.
Jerk mm/s3	Visible only when "Interface Type" = 1
UEIK IIII/35	Nominal jerk rate.
Numb AltProfiles	Visible only when "Interface Type" = 1
	Number of selectable alternate speed profiles. The actually used speed profile is
	then determined by the OCSS (e.g. GECB) before every start of run.
Alt1 Speed mm/s	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 1
L .	Constant speed when alternate profile 1 is used.
	Note: Set automatically to Nom Speed mm/s when invisible.
Alt1 AcDec mm/s2	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 1
	Acceleration & deceleration rate when alternate profile 1 is used.
	Note: Set automatically to Accel mm/s2 or Decel mm/s2
	(whatever is lower) when invisible.
Alt1 Jerk mm/s3	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 1
	Jerk rate when alternate profile 1 is used.
	Note: Set automatically to Jerk mm/s3 when invisible.
Alt2 Speed mm/s	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 2
_	Constant speed when alternate profile 2 is used.
	Note: Set automatically to Nom Speed mm/s when invisible.
Alt2 AcDec mm/s2	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 2
	Acceleration & deceleration rate when alternate profile 2 is used.
	Note: Set automatically to Accel mm/s2 or Decel mm/s2
	(whatever is lower) when invisible.
Alt2 Jerk mm/s3	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 2
	Jerk rate when alternate profile 2 is used.
	Note: Set automatically to Jerk mm/s3 when invisible.
Alt3 Speed mm/s	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 3
	Constant speed when alternate profile 3 is used.
	Note: Set automatically to Nom Speed mm/s when invisible.
Alt3 AcDec mm/s2	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 3
	Acceleration & deceleration rate when alternate profile 3 is used.
	Note: Set automatically to Accel mm/s2 or Decel mm/s2
	(whatever is lower) when invisible.
Alt3 Jerk mm/s3	Visible only when "Interface Type" = 1 and "Numb AltProfiles" => 3
	Jerk rate when alternate profile 3 is used.
Comp Choose mm /-	Note: Set automatically to Jerk mm/s3 when invisible.
Corr Speed mm/s	Visible only when "Interface Type" = 1
	Speed used for correction runs. Automatically set when "Nom Speed mm/s" is changed. Notes:
	- Upper limit is actual value of "Nom Speed mm/s" resp. 2000 mm/s.
	- A lower limit of 500 is recommended because of thermal concern
	for longer correction runs.
	- Parameter DDP sec has to be adjusted if necessary.
L	

Base Speed %	Visible only when "Interface Type" = 1
	This parameter is a profile adjustment parameter. Nominally it is set to 75%. Its
	main function is to start removing the acceleration (jerking out of constant
	acceleration or jerking into constant velocity) at a point where the speed is 75%
	(or the value entered by the user/operator) of the nominal speed. The main
	purpose of this parameter is to limit the converter peak current and/or to limit the
	maximum motor voltage (especially for induction machines).
	Note: this parameter is valid for the default profile and also for Alt1 Alt3 profiles.
Creep Speed mm/s	Visible only when "Interface Type" = 1
Creep speed num/s	This is the final landing speed of the profile generator. When the profile hits this
	speed after it decelerates to the target it travel with a constant velocity of "Creep
	Speed" for a certain distance defined in "Creep Length". If the "Creep Speed" is
	set to zero this feature is disabled.
Creep Length mm	Visible only when "Interface Type" = 1
	The distance covered between the events that the profile reaches the creep
	speed and it finally lands to the target. Setting this value to zero disables this
	feature.
Creep Jerk 0/1	Visible only when "Interface Type" = 1
	This service tool selection provides the choice of ending the creep zone via either
	a limited jerk profile, where the jerk value is defined in "Jerk mm/s3" or a
	timed deceleration.
	0 – Infinite jerk values are used during final landing (i.e., timed decel)
	1 – Finite jerk values are used during final landing (i.e. profile)
	Choice "1" results in smoother landing, while choice "0" results in faster landing
	(shorter flight time).
Zero Vel Tim ms	Visible only when "Interface Type" = 1
Zero Vel Tim ms	Visible only when "Interface Type" = 1 This parameter sets the time for holding the velocity reference at zero speed at
Zero Vel Tim ms	
Zero Vel Tim ms MCSS Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at
	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake.
	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake.Visible only when "Interface Type" = 0,2,3,4Overspeed trip point as a percentage of the parameter: Duty Speed mm/s
MCSS Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed.
MCSS Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake.Visible only when "Interface Type" = 0,2,3,4Overspeed trip point as a percentage of the parameter:Duty Speed mm/sSee fault:500 Overspeed.Visible only when "Interface Type" = 0,2,3,4
MCSS Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake.Visible only when "Interface Type" = 0,2,3,4Overspeed trip point as a percentage of the parameter:Duty Speed mm/sSee fault:500 Overspeed.Visible only when "Interface Type" = 0,2,3,4Overspeed trip point as a percentage of the parameter:Man Speed mm/s
MCSS Overspeed % MAN Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed.
MCSS Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5.
MCSS Overspeed % MAN Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0
MCSS Overspeed % MAN Overspeed % ARO Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Oversped.
MCSS Overspeed % MAN Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1.
MCSS Overspeed % MAN Overspeed % ARO Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1. Visible only when "ARO Type" = 2.
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s	 This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Oversped. Visible only when "Duty Type" = 1. Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Oversped.
MCSS Overspeed % MAN Overspeed % ARO Overspeed %	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1. Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd.
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1. Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1. Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1. Visible only when "Duty Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s ETP Spe %DutySpe	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1 . Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates the ETS1 relay. The unit is percent of the parameter "Duty Speed mm/s".
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1 . Visible only when "ARO Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates the ETS1 relay. The unit is percent of the parameter "Duty Speed mm/s". Visible only when "Interface Type" = 1
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s ETP Spe %DutySpe	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1 . Visible only when "Duty Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates the ETS1 relay. The unit is percent of the parameter "Duty Speed mm/s". Visible only when "Interface Type" = 1 Refer to "ETP Spe %DutySpe" above. This is threshold of "ETP secondary". Drive
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s ETP Spe %DutySpe ETP2 Spe %Duty	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1 . Visible only when "Duty Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates the ETS1 relay. The unit is percent of the parameter "Duty Speed mm/s". Visible only when "Interface Type" = 1 Refer to "ETP Spe %DutySpe" above. This is threshold of "ETP secondary". Drive sends the message of DriveSpeedCheck2(EtpSecondary) to OCSS.
MCSS Overspeed % MAN Overspeed % ARO Overspeed % ARO Speed mm/s ETP Spe %DutySpe	This parameter sets the time for holding the velocity reference at zero speed at the end of a run to ensure car motion has stopped before dropping the brake. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Duty Speed mm/s See fault: 500 Overspeed. Visible only when "Interface Type" = 0,2,3,4 Overspeed trip point as a percentage of the parameter: Man Speed mm/s See fault: 500 Overspeed. Visible only for Duty Type = 1 and ARO Type = 2 or 5. Overspeed trip point as a percentage of the parameter: ARO Speed mm/s. 0 disables the overspeed trip. See fault: 533 ARO Overspd. Visible only when "Duty Type" = 1 . Visible only when "Duty Type" = 2. Speed during ARO type run. See related fault: 533 ARO Overspd. Visible only when "Interface Type" = 1 The Emergency Terminal Protection (ETP) feature is used at units above 2.5 m/s in case of reduced buffer stroke. This parameter specifies the speed below which the message DriveSpeedCheck2 is sent to the OCSS. The OCSS then operates the ETS1 relay. The unit is percent of the parameter "Duty Speed mm/s". Visible only when "Interface Type" = 1 Refer to "ETP Spe %DutySpe" above. This is threshold of "ETP secondary". Drive

Buffer/ETSD mm/s	Visible only when "Interface Type" = 1
	Speed for the Buffer/ETSD test run.
	Note: this parameter is automatically limited to Duty Speed mm/s and Nom
	Speed mm/s (whatever is lower).
GovOverSpd mm/s	Visible only when "Interface Type" = 1
	Speed for the Governor Overspeed test run.
	Note: this parameter is automatically limited between 100% x Nom Speed
	mm/s and 130% x Nom Speed mm/s.
Man Load %	Visible only for Duty Type = 1
	This is used when a load weight device is unknown in a case like construction
	mode. Sets the value as in-car load%.
Enc acc lim m/s2	Visible only for Duty Type = 1
	Specifies the acceleration rate above which the velocity feedback is ignored. This
	is designed for encoders that occasionally produce noise spikes with acceleration
	levels that are an unrealistic representation of the mechnnical system. If the
	acceleration level is ignored, it will be ignored only for as long a the Enc acc
	lim t ms parameter setting.
	A typical value to use is 9.8.
Enc acc lim t ms	Visible only for Duty Type = 1
	Specifies the maximum amount of time that the velocity feedback will be ignored
	if the acceleration limit (see Enc acc lim m/s2) is exceeded.
	A typical value to use is 10.
UCM Acc Up mm/s2	Visible only when "Interface Type" = 1
	Specifies the acceleration rate for the free-roll simulation profile used in the UCM-
	EN handover test, empty car up.
UCM Acc Do mm/s2	Visible only when "Interface Type" = 1
	Specifies the acceleration rate for the free-roll simulation profile used in the UCM-
	EN handover test, full load down.
Dec Speed mm/s	Visible only when "Interface Type" = 1.
	This parameter specifies the Decreased Speed (or Lower speed) that the car
	reduces to after passing the 1DS or 2DS sensor. It should be set so that the
	buffer impact allowance speed is satisfied. See the parameter "TwoStepSpeed
	0/1" for more details.
TerminalPhase mm	Visible only when "Interface Type" = 1.
	Length of reduced-speed zone before the terminal landing. This specifies a
	feature that limits speed to the value "TerminalPhs mm/s" within this terminal
	zone, e.g. where a reduced stroke buffer requires a speed lower than a 2 stage
	ETSD can handle.
	Setting this parameter to zero disables the "reduced terminal speed" feature and
	hides the parameter "TerminalPhs mm/s".
	Setting this parameter >0 enables the "reduced terminal speed" feature and
	disables the creep phase specified by "Creep Speed mm/s" and "Creep Length
	mm" for all target landings within "TerminalPhase mm".
TerminalPhs mm/s	Visible only when "Interface Type" = 1 and "TerminalPhs mm/s" > 0.
	Speed limit in reduced-speed zone before the terminal landing. This specifies a
	feature that limits speed to this value within the terminal zone "TerminalPhase
	mm", e.g. where a reduced stroke buffer requires a speed lower than a 2 stage
	ETSD can handle.

6.7.6 3-6 FACTOR	Y
SVT Display	Description
Factory Password	When the correct password is entered, the following parameters become visible to the user.
DC Bus fscale V	Visible only when "Factory Password" is set.
	Specifies the full-scale voltage for the DC bus voltage sensing. This parameter is adjusted at the factory so that the DC bus voltage shown in the service tool matches the DC voltage measured using a DVM.
	Note for 60A/120A/160A V.2 and 20A/30A/40A V.2.1 and 30A/40A V.2.2
	drives:
	the trim parameter is stored in the power section EEPROM and is read automatically. This parameter will therefore be set automatically to its default
	value of 1000 and does not need to be adjusted.
AC Line fscale V	Visible only when "Factory Password" is set.
	Specifies the full-scale voltage for the AC line voltage sensing. This parameter is
	adjusted at the factory so that the AC line voltage shown in the service tool
	matches the AC voltage measured using a DVM. The average of the sensed voltages should be used for this calibration procedure. For example, the 60A
	drive has only two line-to-line voltage sensors (Vrs and Vst). These two line-to-
	line voltages should be averaged for this calibration procedure. It is preferred that
	the factory has a balanced AC line supply for this procedure, but it not necessary.
	Note for 60A/120A/160A V.2 and 20A/30A/40A V.2.1 and 30A/40A V.2.2
	drives:
	the trim parameter is stored in the power section EEPROM and is read
	automatically. This parameter will therefore be set automatically to its default
	value of 1000 and does not need to be adjusted.
Ac/Dc Calibra PU	Applicable only when "Low Volt Op 0/1" is set to 1.
	This is the calibration factor that ensures AC voltage sensing and DC voltage
	sensing are commensurate.
Cnv PWM freq Hz	Visible only when "Factory Password" is set.
	Specifies the PWM frequency of the converter. The current regulators run at half
	the PWM frequency over 5000kHz.
	OVF460G: 6000Hz
	OVF428G: 10000Hz with D25 machine OVF428G: 6000Hz with IM40T machine
	OVF428G: 9000Hz with PM30T or 156MST machine
	OVF416G: 7000Hz with PM138 or 156MST machine
	Other drives are 10,000Hz as a default.
Inv PWM freq Hz	Visible only when "Factory Password" is set.
-	Specifies the PWM frequency of the inverter. The current regulators run at half
	the PWM frequency over 5000kHz
	OVF460G: 6000Hz
	OVF428G: 5000Hz with D25 machine
	OVF428G: 6000Hz with IM40T machine
	OVF428G: 9000Hz with PM30T or 156MST machine
	OVF416G: 7000Hz with PM138 or 156MST machine
0 m m m m m m m 0 m 0 / 1	Other drives are 10,000Hz as a default.
Cnv Hrmnc On 0/1	Visible only when "Factory Password" is set.
	Specifies if the converter harmonic regulators are active.
	 0 – The converter harmonic regulator is disabled 1 – The converter harmonic regulator is enabled.
	This parameter can be changed while the drive is running.
	For OVF416G, 428G and 460G, this parameter is normally set to "0" as a disable.

6.8 Engineering Parameters Detailed Description

Parameters in the engineering SVT menu are meant for engineering purposes only. Please do not arbitrarily change SVT parameters in the engineering menu without consultation from engineering first. Otherwise, damage to equipment is possible. The parameters are visible only when the engineering password has been entered.

6.8.1 6-1 ENG ADJUST

SVT Display	Description
Engineer Passwrd	When the correct password is entered, the engineering menus become visible to
	the user.
PFC Volt Lvl %	Visible only when "Engineer Passwrd" is set.
	The Power Factor Controller (PFC) is a voltage regulator that allows higher ac
	input voltages without exceeding maximum sinusoidal converter output voltage
	and is applicable to regen drives only. This parameter specifies the voltage level
	at which the PFC begins to dictate positive d-axis current. This parameter is a
	percentage of the maximum sinusoidal output voltage, which is equal to the bus
	voltage divided by sqrt(2) (line-to-line rms). This parameter is typically set to 100.
	To disable the PFC, set this parameter to 200. This parameter is usually useful in
	NAA area as for other regions the ac input is lower.
Min IGBT on t us	Visible only when "Engineer Passwrd" is set.
	Sets an IGBT minimum on-time different from default settings. Note: parameter
	Engineering Test must be set to 2006 (enable 156inimum IGBT time) prior to this.
Pos Gain	Visible only when "Engineer Passwrd" is set.
	Proportional gain of the position regulator.
Pos Err Lim mm	Visible only when "Engineer Passwrd" is set.
	Specifies the limit used to detect tracking error. If the absolute difference
	between the predicted position (based on the profile generator position reference)
	and the position feedback (based on the encoder) exceeds this limit, a fault is
	logged and an emergency stop results. See fault: 501 Pos Tracking
Vel fscale PU	Visible only when "Engineer Passwrd" is set.
	Per unit value of the internal software scaling of the velocity.
LRT Frequency PU	Visible only when "Engineer Passwrd" is set.
	This is the frequency of the test current signal as a per unit of the desired current
	inverter regulator frequency to calculate rotor magnet postion with respect to the
	encoder.
LRT Ld Cycles	Visible only when "Engineer Passwrd" is set.
	This is the number of periods of the rotor inductance waveform. The rotor
	inductance waveform repeats itself over a mechanical revolutions by the number
	of pole pairs. A good number minimum number for this would be the number of
	pole pairs. Anything larger will improve noise immunity of the results.
Vq out thresh PU	Visible only when "Engineer Passwrd" is set.
	Q-axis current regulator output threshold when the brake is not lifted yet. This is
	used to detect failed current sensors or disconnected motor from the drive as a
	result of wiring errors or relays not working etc. See fault 111 No Id fdbk.
Sngl PWM ang deg	Visible only when "Engineer Passwrd" is set.
	This parameter determines when one of the converter legs (R- or S-phase) not to
	be switched while the other is being switched. The threshold is as a function of
	the utility angle (utility voltage signal crossing zero volts is the reference). A value
	of zero disables the feature all together leaving a sine triangle PWM method,
	while a very small nonzero value will cause one cycle not to switch and the other
	switching, while the next cycle this role swaps as far as the phase concerns.

Test Noise Lvl %	Visible only when "Engineer Passwrd" is set. This parameter along with "Test Noise BW Hz" control the characteristics of the noise injected to the control loops in special test modes. This parameter multiplies the noise by unity at 100 percent and linearly otherwise. This parameter is especially used to filter the noise heavily for low bandwidth loops while generating enough excitation for acceptable coherence.
Test Noise BW Hz	Visible only when "Engineer Passwrd" is set. This parameter sets the bandwidth (Hz) of the white noise used during the test modes for the inner and outer velocity regulators, the field weakening regulator, and the position regulator.
Target mm	Visible only when "Engineer Passwrd" is set. Position target, applicable only in DAT_PROFILE test mode.
Drive Pmax kW	Visible only when "Engineer Passwrd" is set. This parameter specifies the set point for the power-limiting feature in the profile generator. This is an engineering parameter, normally set to a very high value so that the function is disabled. When it is set to a value close to the drive capability, a near-optimal trajectory is calculated to limit the maximum output power (in the profile generator this controls J4f and J6f).
Load in car %	Visible only when "Engineer Passwrd" is set. This parameter is used in conjunction with the power-limiting feature of the profile generator (see "Drive Pmax kW" above). This is an engineering parameter used only in the DAT_PROFILE mode. In all other normal modes, the actual load from the load weight system is used.
Drive Vrated m/s	Visible only when "Engineer Passwrd" is set. This parameter is used in conjunction with the power-limiting feature of the profile generator (see "Drive Pmax kW" above). This value should be larger than or equal to the nominal speed of the elevator. This is useful when a high speed machine is to be used at lower speeds.
Belt Cmp Off A	Visible only when "Engineer Passwrd" is set. This parameter is used to over-ride the learned compensation parameter for belt and traveling cable imbalance. This parameter specifies half of the difference of the torque current during the constant speed portion of the run near the bottom and near the top of the hoistway. The variation should not exceed 30% of rated motor torque.
	See display parameter: BeltCmp:Offset A
Belt CmpSlp mA/m	Visible only when "Engineer Passwrd" is set. This parameter is used to over-ride the learned compensation parameter for belt and traveling cable imbalance. This parameter determines how much current variation is observed per meter of hoistway due to belt and traveling cable imbalance. The drive calculates the necessary current needed to add to the pretorque based on the current position in the hoistway. See display parameter: BeltCmp:Slp mA/m
BeltCmp Lrn? 0/1	Visible only when "Engineer Passwrd" is set. Specifies if the learned parameters to compensate for belt and traveling cable imbalance should be used or over-ridden: 0, 2 – over-ride the learned values and use the parameters specified in EEPROM instead (see above) 0 : Comp_Rope_weight < Main_Rope_weight or without Compensation Rope "Belt Cmp Off A" >= 0 2 : Comp_Rope_weight > Main_Rope_weight
	"Belt Cmp Off A" < 0 1 – use the learned compensation values

2D Enable? 0/1	Visible only when "Engineer Passwrd" is set.
	This parameter is used to enable transmission of the CAN message
	"DriveStoppingInfo", which is sent every 30ms, when enabled.
ARO Bus LwrLim V	Visible only when "Engineer Passwrd" is set.
	Applicable only during ARO(EN) mode.
	During ARO with the regenerative drive, no regenerative energy is allowed to
	return to the battery. Instead, the DC bus is allowed to increase and the
	regenerative energy is dissipated in the losses. If the regenerative energy
	exceeds the nominal losses in the drive such the the bus voltage rises above a
	voltage threshold, then d-axis current is increased in the motor in order to
	increases the losses in the motor, thereby limiting the DC bus voltage rise. This
	parameter specifies the voltage limit on the DC bus, and the parameter
	ARO Mot Id PU specifies how much d-axis current is to be commanded if
	the bus voltage were to reach 750 Vdc (thereby setting the gain of the control).
ARO Mot Id PU	Visible only when "Engineer Passwrd" is set.
	Applicable only during ARO(EN) mode.
	Used in conjunction with the parameter ARO Bus LwrLim V above.
Max Bat Chrg I A	Visible only when "Engineer Passwrd" is set.
	Applicable only during ARO(EN) mode.
	This parameter specifies the amount of regenerative (charging) current during
	ARO operation. It is nominally set to zero. When it is set to zero, if the drive
	detects current less than zero, the fault 211 Battry Chrgd will be logged and the
	drive will ESTOP. When it is set greater than zero, then regenerative (charging)
	current is allowed up to the value specified.
Brk I Hold A	Visible only when "Engineer Passwrd" is set.
	Applicable only when using internal brake (Int Brk Type $0-4 = 1$).
	This specifies the acceptable brake pick and drop thresholds for the brake current
	feedback when using the internal brake control. The faults that will be logged are:
	405 Brake I Drop and 406 Brake I Hold.
Brk I Max A	Visible only when "Engineer Passwrd" is set.
	Applicable only when using internal brake (Int Brk Type $0-4 = 1$).
	This specifies the maximum brake current feedback when using the internal
	brake control. The fault that will be logged is 407 Brake I Max.
Brk I Offset A	Visible only when "Engineer Passwrd" is set.
	Applicable only when using internal brake (Int Brk Type $0-4 = 1$).
	Specifies the allowable offset current when using the internal brake. If the
	threshold is exceeded, the fault that is logged is 404 Brake I Off.
SVT Timeout min	Visible only when "Engineer Passwrd" is set.
	When a remote (MCSS pass-through) SVT is connected and no local SVT is
	connected, the remote SVT gets direct access. However, if a local SVT has been
	connected for less than the amount of time specified by this parameter, then
	remote access is not automatically granted. Instead, a prompt is sent to the
	remote SVT warning that a local SVT is connected. The prompt allows for the
Drea Char Lim and	local SVT to be manually overridden. The default for the timer is 4 hours.
Pre Chg Lim sec	Visible only when "Engineer Passwrd" is set. This parameter is applicable only for the following drives: 90A, 120A, 428, 460,
	and LCRD w/o el2C capabilities. The parameter specifies the maximum time the
	drive is allowed to try to precharge the DC bus. The default value is 10 seconds.
	anve is anowed to try to precharge the DO bus. The default value is 10 seconds.
	For all other drives this parameter is not applicable. The precharge is fixed to a
	pre-set amount and is not adjustable. The specific times are:
	 3.96 seconds for 25A, 40A drives and LCRD w/ el2C capabilities.
	 6.96 seconds for 60A drive.
	 2.20 seconds for 60A-CR drive.

Rollback Call mm	Visible only when "Engineer Passwrd" is set.
	This parameter is valid for JIS and CAN system.
	The drive checks if the rollback distance is over this setting.
Inv ReLe Ilimit%	Visible only when "JIS Function 0/1" = 1 and "Engineer Passwrd" is set. You can check this setting by F12 " 1% IA IR% IRA " of SVT monitor. Specifies the current limit of Re-level for the inverter as a percentage of the full scale current for the drive. This also determines the overcurrent trip level, which is set at 105% of the current limit of Re-level. See fault: 100 Inv SW Oct
Vel Inr wc rad/s	This is the velocity loop crossover frequency. Typical values are from 2 to 4. The default value is 2.
Torq Obs Err %	Visible only when "Engineer Passwrd" is set.
	This parameter sets the threshold for the fault: 544 Torq Obs Flt.
	The torque obsever error is the difference between measured motor torque and expected motor torque (predicted based on motion commands).
	The fault indicates that the atual troque feedback diverged from the expected torque and may indicate there is an obstruction in the hoistway or that belts/ropes friction is less than expected. Setting this parameter to 0 disables this fault.
	0: Fault is disabled.
	>0: fault is enabled and the threshold is set to the parameter value.

6.8.2 6-2 ENG TEST

Parameters in the engineering SVT menu are meant for engineering purposes only. Please do not arbitrarily change SVT parameters in the engineering menu without consultation from engineering first. Otherwise, damage to equipment is possible. The parameters are visible only when the engineering password has been entered.

SVT Display	Description
Engineer Passwrd	When the correct password is entered, the remaining engineering menus become visible in the service tool.
Engineering Test	Visible only when "Engineer Passwrd" is set. Used to activate one of several tests used by engineering. The test are listed in the table below.

Test	Description
1099	Individual sets of variables are monitored via Test Vars (M18).
100	Set ICD version manually, ep1:= ICD version
101	Monitor pos fbk shift in test vars, IF (ep4==1234 AND ep5==1234): trigger one-time
	EndRun cmd injection at (22000mm-ep1/10)
102	Determine LS lag :
	A) IF (ep5==2345 AND ep1>0): invalidate current floor (and NCF and TgtFloor) ep1 ms
	after entering IDLE -> cycles system in CORR runs.
	B) In CORR runs : Monitor first fbk correction after LS recovery:
	TestVariable1=max corr in up dir, TestVar2: min corr in up dir,
	TestVariable3=max corr in down dir, TestVar4: min corr in down dir.
	C) Outside CORR runs : Monitor corrections at vanes:
	TestVariable1=max magnitude correction, any dir,
	TestVariable2: sum of corrections in UP runs,

	TestVariable3: sum of corrections in DOWN runs,
	TestVariable4: num of corrections monitored (both dir).
	Note: Negative correction = Pos.fbk step upwards.
103	Inject UIS DIS: Sets the UIS or DIS signal in s/w to simulate a PRS transition. It is used to cause a position correction with specific timing. Details: See description in code.
104	Inject vane state after LS: This test sets the PRS signals in s/w to simulate a PRS transition causing a position correction. The timing of this transition is preset to a chosen delay after Floor.current changed from INVALID to valid, e.g. after an LS
	 transition. After setting and holding HwySignals, the test's intrusion is ended when The PRS input reaches the state preset by s/w, or 5s have expired Parameters and outputs: See source code.
105	Emulate hysteresis and latency in PRS: This test delays PRS signal transitions to introduce latency or/and modifies mm-position captured at PRS transitions to introduce additional hysteresis. The purpose of the test is to verify process identification tools and to simulate effects of low-quality PRS's. The hysteresis and latency can be specified for each sensor (UIS, 1LV, 2LV, DIS) individually. Parameters and outputs: See source code.
106	Set speed thresholds for switch to High Speed Vane Tracking: ep1 = lower threshold in mm/s (HSVT -> full tracking) ep2 = higher threshold in mm/s (full tracking -> HSVT)
107	ENGTEST_EMULATE_RLEV_SIG_SEQUENCE This test emulates UIS/DIS during an ongoing RELEVEL run such that two UIS/DIS transitions are injected after the run has entered the NRZ. This test provides reduced functionality of test 108. Parameters and outputs: See source code.
108	This test emulates UIS/DIS during an ongoing RELEVEL run such that two UIS/DIS transitions are injected after the run has entered the NRZ.
100	Parameters and outputs: See source code.
109	ENGTEST_ESTOP_SLIDE1
110	ENGTEST_ESTOP_SLIDE2
111	Single phase test. When this value is set the drive configures the test variables to send the following variables: Test Frac 1 = Converter x phase voltage before Single phase PWM forced. Test Frac 2 = Converter y phase voltage before Single phase PWM forced. Test Frac 3 = Sin of converter phase angle; Test Frac 4 = Sin of the converter phase angle at which single phase PWM is invoked
112	ENGTEST TRIGGER FAULT
113	ENGTEST_DELAY_PRS_AFTER_10MS_LATCH
121	ENGTEST_DYNE_CYCLE_NO_STOPFAULTS: Disables "520 Rllbck Start", "521 Rllbck Stop" and "506 Stopping Err". Will remain active in background if Engineering Test is set to other non-zero value. Is deactivated for Engineering Test = 0 (no test).
122	ENGTEST_DISABLE_FAST_LW_AT_RLEV
132	ENGTEST_TORQUE_BOOST_GAIN
136	ENGTEST_BELT_SLIP
138	ENGTEST_LVL_HEALTH
200	ADC_FILTER
400	Test mode where both inverter and converter are disabled
401	Test mode where the converter control is disabled and the inverter is enabled. Second digit refers to converter and third refers to inverter
410	Test mode where converter is enabled but inverter disabled
420	ENGTEST_UPS
463	makes landing table invalid (once per setting)
464	ENGTEST_INVALIDATE_FLOOR_CURRENT
404	

	Floor.current is set to "FLOORNUM_INVALID".
465	ENGTEST_INVALIDATE_LDGTABLE_IN_E2P
470	Setting this test triggers (once) position recovery from SPBC/GECB, monitored in test vars M18.
482	Not used (was applicable only for non-regen drives).
497	manipulates detected pos and floor at transition into 1LS
_	IF (ep1!=0 or ep2!=0): detctdPos := learnedPos+ep1-ep2
	IF (ep3!=0 or ep4!=0): curFIr := learnedFIr+ep3-ep4
498	ENGTEST_2LS_FLÁSH_WHEN_1LS_ON
499	ENGTEST_2LS_ON_WHEN_1LS_ON
500	ENGTEST_1LS2LS_ON_WHEN_2LS_OFF
512	PRS Override
513	lower speed check limit for releveling, triggers RLEV abort
600	"BrakeState" CAN message is derived from BY relay instead of BS1/2
601	Simulates different states of BS1 and BS2 inputs. Affects only the "BrakeState" CAN
	message, not drive operation.
610	Check the communication between GDCB and SBSB using DAT:
010	Test Int 1: Command to SBSB:
	1: 20% duty cycle: No diode to both brake coils, 20V hold voltage
	2: 40% duty cycle: One brake coil with diode and 46V,
	other brake coil no diode and 20V
	3: 60% duty cycle: Both diodes to both brake coils, 46 V
	4: 80% duty cycle: No diode to both brake coils, 46V pick voltage
	Test Int 2 = Answer from SBSB, identical to command expected
	Test Int 3 = 10 releases "932 SBSB Fault "
	Test Int 4 = Torque value for "SBSB Motor Trq %" and "SBSB Regen [+49%"
766	Monitor internal learn run vars in test.xy display vars.
800	JIS DEFAULT PARAM
	This should be set after the end of a test of "801 JIS UCMP TEST" to return to default
	parameters.
801	JIS UCMP TEST
	This is used for UCMP test. If "EngTest Param1" is set from 0 to 180, the pole position
	is shifted to start with an un-intended motion which is called "Rocket start".
802	JIS TRACKING INVALID
	This is used for any engineering test without "velocity tracking fault".
803	JIS WITHOUT LWS
	This is used for CAN simulator without LWS. If this is set, a releveling mode is enabling
004	with invalid data of the Load.
804	ENGTEST_JIS_REI_BTI
	This is used for Brake inspection mode of Remote test.
0.05	If "EngTest Param1" is set to 2, Drive sends NG_DATA by 2 trying to OCSS.
805	ENGTEST_JIS_DBR_TEST
022	This is available to set the DBR status to ON or OFF.
833	ENGTEST_CAN_OVERSPEED This mode is used for "115% Overspeed running" with CAN Interface.
	If this mode is set, the Overspeed threshold is changed from 110% to 120%.
841	ENGTEST_LRT_24H_TEST
041	This test mode is for LRT quality during 24 hours cycle run.
	Every running does the LRT before start of the run.
851	EVERY fullning does the LKT before start of the full.
001	This is used for NTSD and ETSD test of HSOVF or OVF412RCR with CAN interface.
	NTSD: If the "EngTest Param1" is set to 120%, the "Decel mm/s2" is 120% for the
	profile.
	ETSD: If the "EngTest Param2" is set to 100, the NTSD mode is disabled.
L	

852	ENGTEST_POWER_DOWN_MODE
	This is used for a test of "Power down" with MX-OFF.
	If the "EngTest Param1" is set to 100, the "Drive.dischargeRequest" is set to TRUE.
	Then Drive state moves to "Power Down" with MX-OFF.
853	ENGTEST_SLACK_ROPE
	This is used for check of "728 Slack Rope" event.
854	ENGTEST_TCI_ERO_MODE
	This is used for the test of TCI operation in LS with ERO.
855	ENGTEST_MCSS_NTSD_TEST
	This is used for drive limit control during NTSD
861	ENGTEST_LW_HITCH_CHECK
	If the "EngTest Param1" is set to some LwHitchSensorNumber,
	The data of "HitchLwSensor" is able to be monitored on SVT M213.
862	ENGTEST_BALLANCE_CHECK
	Only for an engineering test to SVT monitor "Unbalance % kg".
	The "EngTest Param1" is applied to unbalanced Iq.
863	ENGTEST_LW_DATA_CHECK
	The hitch load data is visible on SVT or DAT monitor.
	Test.x1 = LwLoadPercent;
	Test.x2 = LwHitchKg;
	Test.x3 = LwHitchSensorNumber;
	Test.x4 = LwHitchSensorValue;
871	ENGTEST_RELEVEL_TEST
	The PRS data is visible on SVT or DAT monitor.
	Test.x1 = In.uis;
	Test.x2 = In.dis;
872	ENGTEST_BRAKE_OPEN_TEST
	Only for an engineering test to verify the "Brake Open mode". BrkTrqTest.brkOpenSpeedthreshMLB = _IQ(E2_value[E2_ENG_TESTPARAM1] / Vel.fs_mmps);
	BrkTrqTest.brkOpenSpeedthreshGap = _IQ(E2_value[E2_ENG_TESTPARAMI] / vel.is_mmps);
890	ENGTEST_MOTOR_SLIP_TEST
	This is used for check of "030 MotorRun Err" event.
900 -	Self Commisioning fault management tests. Each test simulates one of the self
929	commissioning faults.
930	ENGTEST_ADVANCED_STOPPING_DISTANCE
931	ENGTEST_MM_POSITION
932	OARO STATE MACHINE
933	ENGTEST_OARO_CHARGER_POWER
934	ENGTEST_OARO_BATTERY_FAULT
935	ENGTEST_OARO_OVER_TEMP
937	ENGTEST_OARO_TYPE_MIS
938	ENGTEST_OARO_DISCHARGED_BATTERY
939	ENGTEST_OARO_FAULT
940	ENGTEST_OARO_BLV_RELAY
941	ENGTEST_OARO_AR_RELAY_PICK
942	ENGTEST_OARO_AR_RELAY_DROP
943	Reserved for Ultra Drive platform
944	ENGTEST_AHC_DYNE_RESONANCE
945	
-	
946	
	function
944 945	ENGTEST_AHC_DYNE_RESONANCE Allows for white noise transfer function of dyne resonance filter for AHC ENGTEST_AHC_NOTCH_FILTER Allows for white noise transfer function of notch filter for AHC ENGTEST_VEL_SIN Allows for sine wave injected into velocity command test mode for system transfer

947	reserved for MCSS communication test in Top of car software
1000	Vdc cap failure test. When setting the engineering parameter to this value it generates
1000	a dc cap failure fault, even it is not happened.
1502	This is to indicate the software the drive hardware is configured for ARO test mode
1302	where the dc bus is regulated to 150volts (regen drive only) with the exception that if
	"EngTest Param1" is set greater than 99 volts, then the bus voltage reference will be
4500	whatever "EngTest Param1" is set to.
1503	Makes profile delay setting effective during ARO. Captures selectable sets of variables
	related to ARO roll and converter current threshold detection in the Test.x DAT
	variables, see source code for details.
	This test is automatically activated after POR by the one-shot parameter set
	E2_ENG_TESTPARAM1:= 20, PARAM2:= 6, PARAM3:= 64.
1504	UCM_FAULT
1505	ARO_BOOST2: This engineering test mode enables the global regenerative drive to be
	run from batteries while the battery is connected on L1 –L3 and also it allows the
	Korean Regen drives to operate on battery dc bus voltage boosting mode. The Korean
	Regen drive requires the batteries being connected on L1-L3 of the input phase. Note
	also that the global REGEN drive needs an external precharge circuitry, otherwise
	damage could occur.
1900	OARO BATTERY TEST
1901	OARO BATTERY TEST2
2000	Fan test (fan is on with specified duty cycle). The duty cycle is commanded via the
2000	
0004	the engineering menu and setting parameter EngTest Param1.
2001	Position Filter Test. Sets the following test varaibales for visibility:
	Test.x1 = Pos.correction;
	Test.x2 = wholeUnits;
	Test.x3 = incrementalCorrection;
2002	Profile test 1. Sets test variables as follows:
	Test.x1 = _IQ((Prof.pos+Prof.sd)/100.0);
	Test.x2 = _IQ(nextStoppingPosition/100.0);
	Test.x3 = _IQ(advProfStatePtr->dataInvalid_decelPhase);
	Test.x4 = _IQ(advProfStatePtr->acc);
2003	Profile test 2. Sets test variables as follows:
	Test.x1 = Pos.latch + Pos.direction * ProfStateIn350ms.pos;
	Test.x2 = nextStoppingPos;
	Test.x3 = nextStoppingPosIn350ms;
	Test.x4 = ProfStateIn350ms.dataInvalid_decelPhase;
2004	Start delay test. Sets test variables as follows:
2004	Test.x1 = possibleStartDelayMs;
2005	
2005	Temperature test. Sets temperature reading based on DAT: $here = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right) \left(\frac{1}{2} \right)$
	Inv.temp.in = _IQ(((OInt32)(Pc_to_logger.ref_0 + Pc_to_logger.ref_1)) /
	HEATSINK_FULLSCALE);
2006	Enables minimum IGBT on-time for regen drive also and allows minimum on-time to be
	set according to the SVT parameter "Min IGBT on t us" for both types of drives.
4001	PLL test in which the converter and the inverter is disabled. This test mode works in
	conjunction with the DAT to get signal values from the DAT. See Table 8-2 Test Mode
	I/O.
8010	ZERO_OUT_LOAD_WEIGHING: This test mode independently disables the pretorque
	value and sets it to balanced car (load) condition (=0).
9010	Simulates failed 1LS signal in low state
9011	Simulates failed 1LS signal in high state
9020	Simulates failed 2LS signal in low state
9020	Simulates failed 2LS signal in high state. in high state
9022	ENGTEST_ZKIP - Returns the access level in Test.x1.

Sheet 164 of 213

9422	ENGTEST_ALWA_422 - Enable ALWA algorithm in 422 mode
9431	ENGTEST_ALWA_ALL - Enable ALWA for all run types.
9432	ENGTEST_STATE_MACHINE_UIB
9434	ENGTEST_ADC_BLOCKING_INT
9435	ENGTEST_422_OVER_CAN
9500	ENGTEST_SINGLE_PH_HARMONIC_REG
9501	ENGTEST_INVERTER_HARMONIC_REG
9502	ENGTEST_INVERTER_HARMONIC_REG_D
9503	ENGTEST_INVERTER_HARMONIC_REG_Q
9504	ENGTEST_VBUS_SIMULATED
9505	ENGTEST_CNV_I_IMBAL
9506	ENGTEST_ABS_ENCODER
9514	ENGTEST_MAX_MTR_FREQ150

Note: "ep" = "EngTest Param"

	Visible only when "Engineer Decourd" is act
EngTest Param1	Visible only when "Engineer Passwrd" is set.
EngTest Param2	These parameters are MULTI PURPOSE test parameters that have different
EngTest Param3	purposes depending on what test was selected via the "Engineering Test"
EngTest Param4	parameter.
EngTest Param5	
EngTest Param F1	
EngTest Param F2	
EngTest Param F3	
EngTest Param F4	
EngTest Param F5	
Cnv PWM Avg 0/1	Visible only when "Engineer Passwrd" is set.
	Specifies if the converter PWM is to be averaged.
	0 – The converter PWM averaging is disabled.
	1 – The converter PWM averaging is enabled.
	This only affects PWM update rate, it does not change the cnv current regulator
	rate.
Inv HrmncCmp Deg	Visible only when "Engineer Passwrd" is set.
	This parameter is used to tune the 6th harmonic inverter current regulator stability
	and to account for computational delays. This heavily depends on the rated
	frequency of the machine to have harmonic regulators turned on.
Inv Hrmnc BW Hz	Visible only when "Engineer Passwrd" is set.
	This is the default BW of the 6th harmonic inverter current regulator and
	potentially needs to be revisited if a new machine is to be tune.
Inv Hr Thrs mm/s	Visible only when "Engineer Passwrd" is set.
	The 6th harmonic inverter current regulator ideally needs to be tuned based on
	speed. If not, it is better to turn it on beyond a speed. This parameter defines that
	threshold. However there is a range of tolerable speeds that the harmonic
	regulator is supposed deliver stable harmonic current control.
TimeDec Test 0/1	Visible only when "Engineer Passwrd" is set.
	This parameter allows the user to initiate a timed-decel during a run and is used
	for test purposes only.
	0 - no action taken
	1 - Initiate timed-decel.

Encoder Test 0/1	Visible only when "Engineer Passwrd" is set. This parameter allows the user to virtually disconnect the encoder from the control and is used for test purposes only. 0 – normal operation
	 the velocity feedback and the position feedback are not used in the velocity regulator, the position regulator, nor the field orientation. The velocity feedback calculation and the position feedback calculation can still be viewed in the service tool display.
Ovrtmp Estop 0/1	Visible only when "Engineer Passwrd" is set.
	Determines how the drive will respond to a heatsink overtemperature fault. 0 – The drive will log the fault 601 Inv Tmp Over using the default temperature trip point, and the fault response is to complete the run (COMP).
	1 – The drive will log the fault 601 Inv Tmp Over using the temperature trip point specified by the parameter HS Overtmp deg C, and the fault response is an emergency stop (ESTOP).
HS Overtmp deg C	Visible only when "Engineer Passwrd" is set. Specifies the trip point for the overtemperature fault when the parameter Ovrtmp Estop 0/1 is set to 1.
Flr To Test	Visible only when "Engineer Passwrd" is set. Used only for testing vane positions. Specifies the floor to be tested (bottom floor $= 0$)
Flr Pos mm	Visible only when "Engineer Passwrd" is set. Used only for testing vane positions. Displays the center position of vane at the specified floor (previous parameter)
Flr New Pos mm	Visible only when "Engineer Passwrd" is set. Used only for testing vane positions. Allows the center position of vane at the specified floor to be changed. Normally displays 0, and resets to 0 after change occurs.
Flr Vane Len mm	Visible only when "Engineer Passwrd" is set. Used only for testing vane positions. Displays the learned length of the vane at the specified floor. Top and bottom vanes are not learned.
ALWA Confg 0/1/2	Visible only when" Interface type" = 1 0 – Doesnot update pretorque using ALWA gain and offset. 1 – Update pretorque using ALWA gain and offset. 2 –Reset ALWA algorithm.
ARO FLAG AR-Rly	Visible only when "Engineer Passwrd" is set. Applicable only to Optimized ARO when "Interface Type" = 3. Indicates the status of the BLV/AR fault management for Oprimized ARO. 0 = No fault 1 = First attempt to pick BLV resulted in AR relay fault 2 = Second attempt to pick BLV resulted in AR relay fault This parameter defaults to zero, if it is stored to be nonzero during a power up sequence, then optimized ARO is blocked. This parameter is used in the software to report ARO blockage.
ARO FLAG BLV-Rly	Visible only when "Engineer Passwrd" is set. Applicable only to Optimized ARO when "Interface Type" = 3. This parameter defaults to zero, if it is stored to be nonzero after an optimized ARO sequence, then this parameter is used as an indicator to report the controller that the BLV relay is welded and needs to be serviced.

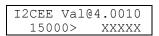
-	
ARO Faults	Visible only when "Engineer Passwrd" is set.
	Applicable to NSAA ARU only.
	Used as a mailbox for saving ARU fault status for when power returns.
	#define OARO_FAULTS_NONE 0
	#define OARO_FAULTS_START 1
	#define OARO_FAULTS_MISSING_BATTERY 2
	#define OARO_FAULTS_TYPE_MIS 3
	#define OARO_FAULTS_DISCHARGED_BATTERY 4
	#define OARO_FAULTS_FAULT 5
	#define OARO_FAULTS_PASS 6
ARO Alarm	Visible only when "Engineer Passwrd" is set.
	Applicable to NSAA ARU only.
	If an ARU alarm condition exists, it is set true, false otherwise.
UCM-EN BlkLatchd	Visible only when "Engineer Passwrd" is set. Applicable only when
	"Interface Type" = 1.
	Shows if blockage due to UCM Fault or Brake Monitoring fault is latched in non-
	volatile memory.
	0 = no blockage active
	1 = blockage active, caused by 723 UCM in Run
	2 = blockage active, caused by 724 UCM in Slide
	3 = blockage active, caused by 725 UCM BrkBlock
DDP Fault	Visible only when "Engineer Passwrd" is set.
	Indicates if a DDP fault is active or not.
	0 – DDP fault not active
	1 – DDP fault active
	This parameter is used to remember the state of the DDP fault through a power
FAN off/0 on/1	cycle. Visible only when "Engineer Passwrd" is set.
FAN OIL/O OII/I	Applicable only when drive type is 428 and 460 drives
	0 = fan is off
	1 = fan is on
Fan Random Area	Visible only when "Engineer Passwrd" is set.
	Changes the carrier frequency of the fan. At the time of Random Area = 0, it is
	usual control.
	As for Gen2P&B, the standard is Random Area=10.
Temp Over Test	Visible only when "Engineer Passwrd" is set.
remp over repe	This is only for Over temperature test. This increases the temperature of
	Converter monitor data.
	This value is set "0" in Initialize.
Can Enc umm/cnt	The drive subscribes to the CAN message ReceivedEncoderData sent from the
	Safety Sub-System. The data is available in the DAT when engineering test mode
	ENGTEST_ABS_ENCODER is set. The data can be used for system
	troubleshooting such as rope stretch. This parameter allows the scaling in
	micrometers per encoder count to be defined.
SSM Config	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Static (Belt) Slip Mitigation feature config key and activation status.
SSM PhantRPeriod	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Latches currrent slip reaction status: Blockage and/or phantom run interval.
SSM MaxSlip	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
Sou navorth	Static Slip Mitigation: Latches largest absolute deviation (expected-measured)
	exit pos.

[
SSM MaxSlip2	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Static Slip Mitigation: Latches largest deviation beyond margin (if magn>margin)
	or closest to (if magn <margin).< td=""></margin).<>
SSM MaxSlip3	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Static Slip Mitigation: Latches largest slip rate or next largest deviation vs. margin.
VTE LdRatio Hyst	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
-	Vane Transition Estimator: Parameters for ratio EmptyCar vs. DutyLoad and for
	PRS hysteresis.
VTE Hitch Strtch	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Vane Transition Estimator: Parameters for hitch spring compression and for rope
	stretch.
VTE MaxErrSameEg	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Vane Transition Estimator: Latches max. estimator errors for entry+exit on same
	edge.
VTE MaxErrOtherE	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Vane Transition Estimator: Latches max. estimator errors for entry+exit on
	opposite edge.
VTE MaxDevFrmNom	Visible only when "Engineer Passwrd" is set and Interface Type = 1.
	Vane Transition Estimator: Latches max. deviation from nominal exit point and
	corresponding residual error of estimator.

6.8.3 6-3 DAC

SVT Display	Description
Engineer Passwrd	When the correct password is entered, the remaining engineering menus become
	visible in the service tool.
DAC 1 Signal	Visible only when "Engineer Passwrd" is set.
DAC 2 Signal	Specifies which signal to use on the indicated D/A converter. These parameters
DAC 3 Signal	are applicable only when the DAT is inactive.
DAC 4 Signal	··· ·
DAC 5 Signal	
DAC 6 Signal	
DAC 1 Gain	Visible only when "Engineer Passwrd" is set.
DAC 2 Gain	Specifies the gain to be used on the indicated D/A converter. These parameters
DAC 3 Gain	are applicable only when the DAT is inactive.
DAC 4 Gain	
DAC 5 Gain	
DAC 6 Gain	
LvlAccThresholds	Visible only when "Engineer Passwrd" is set.
	This parameters specifies the thresholds for the levelling accuracy health metrics.

6.8.4 6-4 I2C EEPROM


SVT Display	Description	
Factory Password	When the correct password is entered, the remaining menus become visible in	
	the service tool.	
I2CEE Val@2.0000	Visible only when "Factory Password" is set.	
	Displays or modifies value stored in I2C EEPROM with device address 2 and	
	specified subaddress 0000 (example). See description below.	

I2CEE Val@3.0000	Visible only when "Factory Password" is set. Displays or modifies value stored in I2C EEPROM with device address 3 and specified subaddress 0000 (example). See description below.	
I2CEE Val@4.0000	Visible only when "Factory Password" is set.	
	Displays or modifies value stored in I2C EEPROM with device address 4 and	
	specified subaddress 0000 (example). See description below.	

Description:

For every available I2C EEPROM device one menu entry is available. Every menu entry consists of 2 switchable modes:

• Data mode (default):

- The value of I2C EEPROM device 4 at subaddress 0x0010 (example) is displayed and can be modified like any other setup parameter.

Display format is: decimal unsigned integer. Value range is: [0..65535].

A negative value -x must be entered in the format: 65536 - |x|.

- Example: to obtain -2 enter 65534.
- A row of "******" is displayed instead of the data value when the device is not readable.
- Press UP or DOWN to increment or decrement the current selected subaddress.
- Press ON to switch to address mode.
- Address mode (entered when ON key has been pressed):

I2CEE	Adr	4.
0010>		XXXX

- The selected subaddress for device 4 (example) is displayed and can be modified like any other setup parameter.

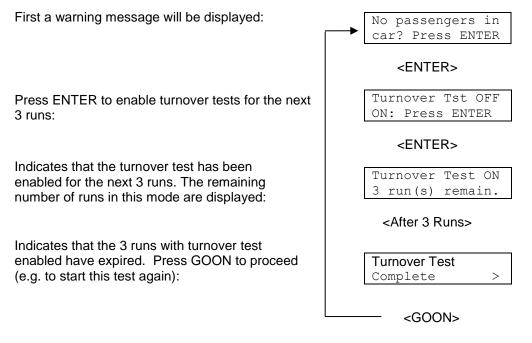
Display format is: hexadecimal. Value range: [0..1FFE], EVEN values only.

- Press numeric keys and hexadecimal keys ('A .. 'F') to enter a new address value.
- Press ENTER to accept the new address and switch back to data mode. Note that the entered address will be adjusted automatically to an EVEN value.
- Press OFF to abort address mode immediately and switch back to data mode.

6.9 Test Menu Detailed Description

6.9.1 5-1 FAN TEST

When this test is activated, the fan should run with full speed for one minute. The FAN test display sequence after entering **menu 5-1** is shown below:



6.9.2 5-2 TURNOVR TST

When this test is activated, some functions are temporarily disabled or modified for several elevator runs:

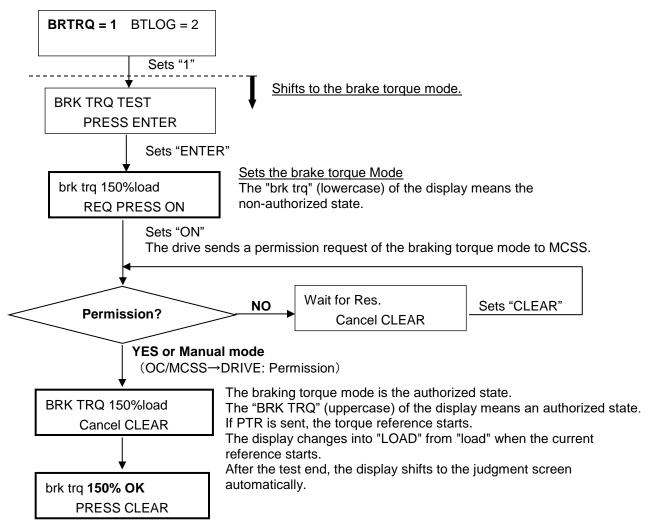
- The check for proper brake switch state is disabled for 3 runs to allow the single-brakeshoe test. The braking distance is estimated by the drive and displayed by the parameter Braking Dist mm.
- The response to a velocity-tracking fault is delayed to accommodate the testing of the safeties. The default delay time is 1.0 second. When Interface Type is set to MCSS-type controller, the time can be adjusted using parameter Turnovr Delay ms.
- The encoder-timeout fault check is temporarly disabled. This extends the usability of this test mode especially when the motor sheave is blocked (sticky brake; probably pullout of safeties).
- The speed when entering the door zone can be monitored by the service tool display parameter Vel Entering DZ.

The SVT display sequence after entering menu 5-2 is shown below:

Notes:

- It is possible to leave this service tool menu without canceling this test. To abort the test, press the CLEAR button. A test-aborted message will be displayed. Press GOON to proceed (e.g. to start this test again).
- <u>This test is NOT intended for buffer testing</u> (i.e. 1LS is NOT disabled for any run). For buffer testing please use 6.9.7 "5-6 BUFFER/ETSD" instead.
- A failure during the locked-rotor test (e.g. "503 LRT Motion" during single-brake-shoe test) does not decrement the 3-run counter. This allows easier continuation of this test.
- When the UCM feature is enabled (parameter UCM-EN on/off = 1) and the "One-shoe brake test" has been performed on a machine with physical brake switches then a possible UCM blockage must be cleared after restoring the brake (by performing an ERO run).

6.9.3 5-3 BrakeTRQ TST


Reference document: 30924_SDD_BrakeTrq

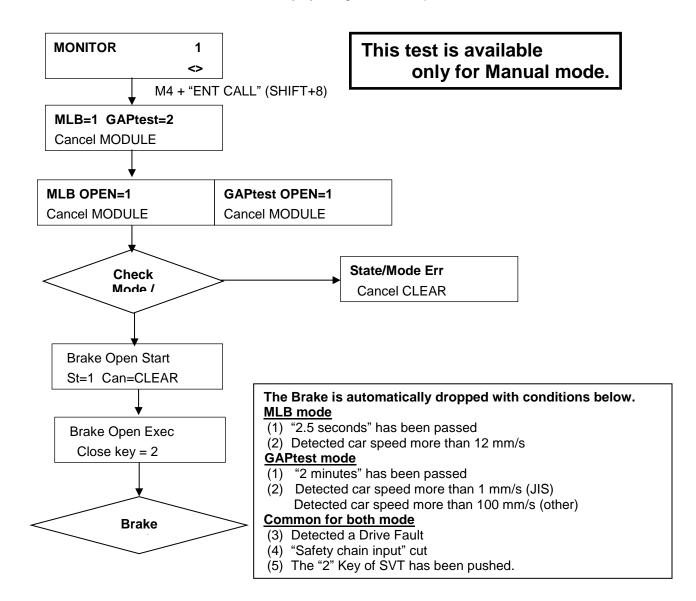
Purpose

- > Provides an inspection tool of braking torque.
- > This test mode provides the safe quality of the brake.

Effect

- > This brake torque tool becomes improvement of maintenance.
- > The braking torque test can be done easily.
- > The test weight transportation cost is reduced, because test-weights are unnecessary.

6.9.4 5-4 Brk Open TST


Reference document: 30924_SDD_BrakeTrq This menu has been blinded because we use this only for some brake test. This function is applied for JIS system or HSOVF416/428/460 drive.

Purpose

- Manual Lift Brake by Brake Open mode.
- To check the gap of brake

Effect

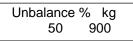
- This Brake Open mode can do manual rescue operation only by Brake control without Inverter control.
- > We can adjust the gap of brake for shipment test or maintenance.
- > We can check the balanced load easily by using the Brake open test.

6.9.5 How to check the balanced load? (For PM machine)

This test is to check if the counter balance load is appropriate to weight. The IM machine has not been verified for this function yet, so it is only for a reference if the machine is induction motor.

Balanced load in car

- 1. Sets a balance load in car
- 2. Moves the elevator to nearest floor to middle of hoist-way by a normal running (UP and Down) / this run is also OK for Manual run or Inspection run with MCSS operation. But it should be normal stop, not emergency stop like "700 Safety Chain".
- Checks the monitor "Unbalance % kg" on SVT F13 for each run The Unbalance % should be less than 5% when the car is balanced. Example1: UP [- 5% -90kg], Down [5% 90kg] ← This is good case. Example2: UP [0% 0kg], Down [10% 180kg] ← This is bad case. It is 90kg unbalance.
- <u>Option</u> / When the "5-4 Brk Open TST" is available with the Manual mode, please check if the car moves during opened brakes. Note: This test must be done with the balanced load in car.


No-load in car

- 5. Removes all load weights in car, there is no load in car.
- 6. Moves the elevator to upper floor
- Moves the elevator to middle floor of hoist-way by a normal running with <u>Down and no load</u> <u>in car</u>. Don't use the UP direction data, because the regen running has some error for this data.
- 8. Checks the monitor "Unbalance % kg" on SVT F13

The Unbalance % should be overbarance % when the car is no load.

Referrence: M431 "Balance %" parameter

Example3: Down [50% 900kg] ← In this case, removed load is 900kg at step5.

Note: The unbalance data has some error. The precision is +/- 5%.

6.9.6 5-5 Opt ARO TEST

Background:

This parameter is utilized to perform a *customer turn over test* for optimized ARO. First, the controller is put on inspection to go away from the floor, then this test is executed via the SVT. Immediately after the test is executed the controller should be put into normal mode to enable an ARO run to the floor. If the inspection switch is not turned on to normal mode then the controller will not issue a rescue run to the floor.

When this test is activated, Optimized ARO is activated. The drive will pick the AR relay which disconnects power from the drive and controller. After a timeout, the drive will enter ARO mode and will activate the converter to generate power for the controller. It will then wait for an ARO run command from the controller. After the run is complete, the drive will exit ARO mode and drop the AR relay, thereby restoring line power to the controller and drive.

Test steps:

- 1. Switch controller to INSPECTION.
- 2. Move car on INSPECTION away from floor.
- 3. Initiate ARO TURNOVER TEST in drive using SVT menu M455.
- 4. Switch controller to NORMAL.
- 5. VERIFY that the car moves to a floor on ARO.

6.9.7 5-6 BUFFER/ETSD

The buffer/ETSD test is a test run with disabled stop control point and disabled 1LS / 2LS, i.e. the car runs with steady speed until it hits the final limit switch, the buffer, the ETSD switches etc. . The speed for this test can be adjusted by the parameter Buffer/ETSD mm/s.

The test allows to check the ETS devices or the car / CWT buffer with a speed independent from the limitation for a correction run.

Note: the value of this parameter is automatically limited to Duty Speed mm/s and Nom Speed mm/s (whatever is lower).

The SVT display sequence after entering menu 5-6 is shown below:

Make sure that there are no passengers in car		No passengers in car? Press ENTER <enter></enter>	
Test speed Buffer/ETSD mm/s has to be confirmed.		1000	beed mm/s y=1/n=0 1>
Enter requested test direction: 1 for Run Down into 1LS (for e.g. car buff 2 for Run Up into 2LS (for e.g. CWT bu		-	to 1LS =1 to 2LS =2 <2>
	Buff/ETSD Ts ON: Press EN	-	Buff/ETSD Tst UP ON: Press ENTER
Test run is started when a CORR run down / up has been initiated by the controller (e.g. GECB, SP).	<enter></enter>		<enter></enter>
Note: One additional non-correction run is allowed in order to adjust car position.	Next Corr Down hits Buffer/ETSD		Next Corr Up hits Buffer/ETSD
 This mode is aborted when: no CORR run in requested direction is performed within three runs, no run is performed within 60 sec. when CLEAR button has been pressed, on power-down. 			
ATTENTION: If the test menu is left at this point and a CORR run down is started within the next 2 runs, the CORR run will run onto the buffer!			
The actual speed is displayed during test run	Buff/ETSD Ts Speed/mm/s	t DN 1000	Buff/ETSD Tst UP Speed/mm/s 1000
Test rup is completed when the sefety			

Test run is completed when the safety chain opens.

A test abort is displayed for the following scenarios:

>

Buff/ETSD Tst UP

>

Complete

Buff/ETSD Tst DN

Complete

Timeout: Test aborted >	Abort if the CORR run in the selected direction has not been started within 60sec after "Next Corr Down/Up hits buffer"		
Too many runs: Test aborted >	Abort if the 2 nd run in the test mode is not a CORR run (and the 1 st was not the selected CORR run, either).		
CORR in bad dir: Test aborted >	Abort if the 2 nd run in the test mode is a CORR run not in the selected direction.		
Buffer/ETSD test and versa).	Switched Tests: Test aborted >Abort if the user leaves the test dialog of the enters the SVT menu of the NTSD test (or vice		
<clear> pressed: Test aborted ></clear>	Abort if the <clear> key on the SVT is pressed.</clear>		
CAN abort cmd: Test aborted >	Abort if the GECB sends a CAN command to abort the test mode.		

6.9.8 5-7 NTSD TEST

The NTSD test is a test run (started as CORR run) that is terminated by the NTSD ("Normal Terminal Stopping Device") function as the regular profile is targeted to a point beyond the terminal landing. This requires recovery of position in 1LS/2LS.

The speed for this test can be adjusted by the parameter Buffer/ETSD mm/s. For the purpose of this test, the CORR speed can be raised above the 2m/s limit applied to regular CORR runs.

Note: the value of this parameter is automatically limited to Duty Speed mm/s and Nom Speed mm/s (whatever is lower).

The SVT display sequence after entering menu 5-7 is shown below:

Make sure that there are no passengers Test speed Buffer/ETSD mm/s has to be confirmed.	in car	car? Pr <en Test Sp 4000</en 	y=1/n=0
Enter requested test direction: 1 for Run Down into 1LS (for NTSD test) 2 for Run Up into 2LS (for NTSD test)		Run DN	to 1LS =1 to 2LS =2 <2>
Test run is started when a CORR run down / up has been initiated by the controller (e.g. GECB, SP). Note: One additional non-correction run is allowed in order to adjust car position. This mode is aborted when: - no CORR run in requested direction is performed within three runs, - no run is performed within 60 sec. - when CLEAR button has been pressed - on power-down.	NTSD Test DO ON: Press EN <enter> Next Corr Do runs into NT</enter>	WN TER	NTSD Test UP ON: Press ENTER <enter> Next Corr Up runs into NTSD</enter>
ATTENTION: If the test menu is left at this point and a CORR run down is started within the next 2 runs, the CORR run will potentially be executed at more than 2m/s!			
The actual speed is displayed during the test run	NTSD Test DO Speed/mm/s	WN 3999	NTSD Test UP Speed/mm/s 4001
and the NTSD decel phase is indicated.	NTSD decel Speed/mm/s	2683	NTSD decel Speed/mm/s 2683
The test run is completed successfullywhen the CORR run completes without ESTOP.	NTSD Test DO Complete	WN >	NTSD Test UP Complete >

A test abort is displayed for the following scenarios:

All abort scenarios described in 5-6 BUFFER/ETSD. Additionally:

ESTOP: Test aborted > Abort if the NTSD deceleration was interrupted by an ESTOP (potentially triggered the final limit switch or ETSD).

6.9.9 5-8 OVERSPEED TEST

The overspeed test is a test run where overspeed threshold and speed reference are increased so the Governors mechanical and electrical settings can be safely tested in the field. This function is only applicable to the interface type = 1 configuration.

For the purpose of this test, the overspeed threshold and the speed reference are changed by entering the absolute velocity in SVT. The maximum velocity for the test is 130% of the normal speed (Nom Speed mm/s) and the minimum value is the same as the normal speed (Nom Speed mm/s) which is default value.

Set the desirable overspeed value to the	GovOverSpd mm/s
"GovOverSpd mm/s" in the menu 3-5.	600 > XXXXX
	<enter></enter>

The SVT display sequence after entering menu 8-4 (Ultra Drive) and 5-8 (GDCB1) is shown below:

Move the car into the starting position at the first. Make sure that there are no passengers in car	No passengers in car? Press ENTER
	<enter></enter>
Test speed has to be confirmed.	Test Speed mm/s 600 y=1/n=0
	<1>
Confirmed the test.	Over Speed Test ON : Press Enter
	<pre><enter></enter></pre>

Test run is started when normal run has been initiated by the controller (e.g. GECB, SP).

Star	rt no	ormal	
run	for	Test	

This mode is aborted when:

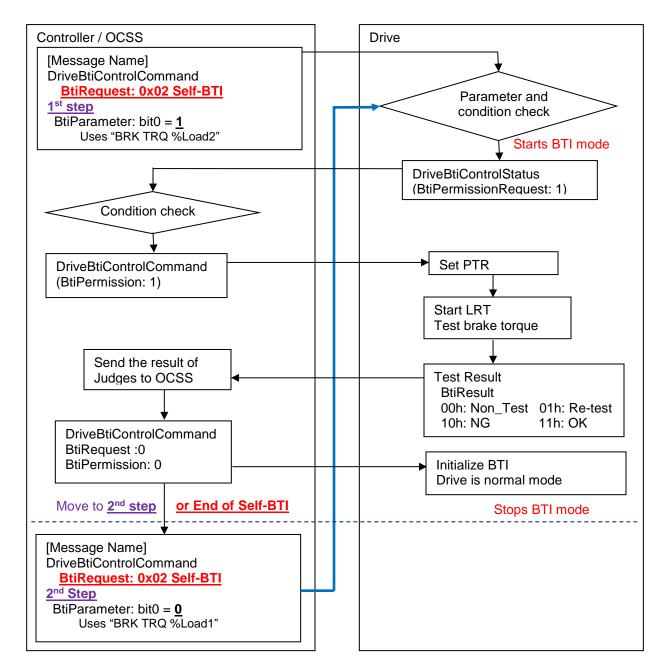
- no run is performed within 60 sec.
- when CLEAR button has been pressed,
- abort command from controller
- on power-down.

<u>ATTENTION</u>: If the test menu is left at this point then, the test is aborted.

	Overspeed Test Speed/mm/s 600
The speed at ESTOP is latched when E-Stop occurs by governor trip	Speed at ESTOP Speed/mm/s 601

Sheet 178 of 213

If there is no ESTOP by governor trip within 15 seconds, then the speed is reduced to normal and the car reaches to the target floor. Then, the SVT display shows the test abort stage.

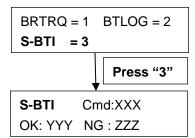

After use enters GOON, the test run is completed successfully.

Shut	Down	Speed
Speed	d/mm/s	500

Overspeed Test Complete >

6.9.10 Self-BTI

Reference document: 30924_DRS_Self-BTI This is an extended feature of Remote BTI test. Controller will automatically check the brake condition on a specific calendar schedule.


If this test is NG, Elevator moves to the lockup operation.

The blocked mode is canceled by the following operation.

-Good result of Manual BTI test

-Special command request by SVT. (F-(Shift+4)- (Shift+8)- Enter and Password = 820)

<u>Self-BTI result count display</u> Displays this menu by "F + Shift4"

XXX: Count Self-BTI request message from OCSS

YYY: Count Self-BTI success

ZZZ: Count Self-BTI failed

This count is cleared by software reset or press "ENTER"

7 Data Acquisition Tool

The Data Acquisition Tool (DAT), Software Configuration Number AAA30959AAA, is a PC-based application for acquiring data from the drive using the drive service tool port. Refer to the DAT Operating Manual, Otis document 55840, for a description on how to use the application.

7.1 Signals

Different signals can be specified for data acquisition by setting the desired signal for each of the four channels in the DAT. Each signal has a default gain that can be modified using the up/down buttons in the DAT. The gain should be increased to achieve the maximum dynamic range without exceeding 100% of the available dynamic range. The percentage of dynamic range is indicated in the DAT.

Note that if the DAT is not being used, and it is desired to select signals for the DACs on the Option Board, the signals can be selected by entering the signal number directly in service tool menu **6-3 DAC**. The signals that are available for acquisition are given in the following table.

DAT D	DAT DEFINES VERSION 79							
	Signal Name	Units	Description					
Invert	er Current Regulat	ors						
0	Inv Ix	Amps	Inverter X-phase current feedback					
1	Inv ly	Amps	Inverter Y-phase current feedback					
2	Inv Iz	Amps	Inverter Z-phase current feedback					
3	Inv Id Ref	Amps	Inverter synchronous d-axis current regulator reference					
4	Inv Id Fbk	Amps	Inverter synchronous d-axis current regulator feedback					
5	Inv Id Err	Amps	Inverter synchronous d-axis current regulator error					
6	Inv Iq Ref	Amps	Inverter synchronous q-axis current regulator reference					
7	Inv lq Fbk	Amps	Inverter synchronous q-axis current regulator feedback					
8	Inv Iq Err	Amps	Inverter synchronous q-axis current regulator error					
9	Inv Vde	Duty(%)	Inverter synchronous d-axis voltage command					
10	Inv Vqe	Duty(%)	Inverter synchronous q-axis voltage command					
11	Inv Vds	Duty(%)	Inverter stationary d-axis voltage command					
12	Inv Vmag	Duty(%)	Inverter voltage command magnitude squared					
13	Inv Vmag Filt	Duty(%)	Inverter voltage command magnitude squared and filtered					
14	Inv Vx	Duty(%)	Inverter X-phase voltage command					
15	Inv Vy	Duty(%)	Inverter Y-phase voltage command					
16	Inv Vz	Duty(%)	Inverter Z-phase voltage command					
17	Inv Dead x	Duty(%)	Inverter X-phase dead-time compensation voltage command					
18	Inv Dead y	Duty(%)	Inverter Y-phase dead-time compensation voltage command					
19	Inv Dead z	Duty(%)	Inverter Z-phase dead-time compensation voltage command					
20	Inv IMAGSQRT	Amps	Inverter current					
21	Inv Downshift	PÜ	Flag to indicate Inverter PWM downshift					
Conve	erter Current Regu							
22	Cnv Ix	Amps	Converter X-phase current feedback					
23	Cnv ly	Amps	Converter Y-phase current feedback					
24	Cnv Iz	Amps	Converter Z-phase current feedback					
25	Cnv Id Ref	Amps	Converter synchronous d-axis current regulator reference					
26	Cnv Id Fbk	Amps	Converter synchronous d-axis current regulator feedback					
27	Cnv Id Err	Amps	Converter synchronous d-axis current regulator error					
28	Cnv lq Ref	Amps	Converter synchronous q-axis current regulator reference					
29	Cnv Iq Fbk	Amps	Converter synchronous q-axis current regulator feedback					
30	Cnv lq Fil	Amps	Converter synchronous q-axis current regulator filtered feedback					
31	Cnv lq Err	Amps	Converter synchronous q-axis current regulator error					
32	Cnv Vde	Duty(%)	Converter synchronous d-axis voltage command					
33	Cnv Vqe	Duty(%)	Converter synchronous q-axis voltage command					
34	Cnv Vds	Duty(%)	Converter stationary d-axis voltage command					
35	Cnv Vmag	Duty(%)	Converter voltage command magnitude squared					
36	Cnv Vx	Duty(%)	Converter X-phase voltage command					
37	Cnv Vy	Duty(%)	Converter Y-phase voltage command					

Sheet 182 of 213

20	Cm/1/-		Converter 7 phase veltage commend						
38	Cnv Vz	Duty(%)	Converter Z-phase voltage command						
39	Cnv ZeroState Cnv Dead x	PU Duty(%)	Converter PWM zero state						
40	Chv Dead x Chv Dead y	Duty(%)	Converter X-phase dead-time compensation voltage command						
41 42	Chv Dead y Chv Dead z	Duty(%) Duty(%)	Converter Y-phase dead-time compensation voltage command Converter Z-phase dead-time compensation voltage command						
42	Chv Dead 2 Chv Notch In	PU PU	Converter notch filter input						
43	Chv Notch Out	PU PU	Converter notch filter output						
	oltage Regulator	FU							
45	Vbus Ref	Volts	Bus voltage regulator reference						
46	Vbus Fbk	Volts	Bus voltage regulator feedback						
47	Vbus Err	Volts	Bus voltage regulator error						
	47 Volus Err Volts Bus voltage regulator error Gain Scheduling for Current								
Regul									
48	Inv Id K gsch	PU	Inverter d-axis gain scheduling factor						
49	Inv Iq K gsch	PU	Inverter q-axis gain scheduling factor						
50	Cnv Id K gsch	PU	Converter d-axis gain scheduling factor						
51	Cnv lq K gsch	PU	Converter q-axis gain scheduling factor						
	e Lock Loop								
(PLL)									
52	PLL Vmag Out	PU	PLL voltage magnitude squared, low-pass filter output						
53	PLL Vmag In	PU	PLL voltage magnitude squared, input to low-pass filter						
54	PLL Vds filt	PU	PLL filtered line-to-line voltage during single-phase operation						
55	PLL Vxy smpl	Volts	PLL Vx-Vy (from A/D converter + scaling).						
56	PLL Vyz smpl	Volts	PLL Vy-Vz (from A/D converter + scaling)						
57	PLL Vxz(Batt)	Volts	PLL Vx-Vz (from A/D converter + scaling). This variable is used to capture battery						
E0	PLL Vds	PU	voltage for Low cost regen drive in battery mode, or ARO_BOOST mode						
58 59	PLL Vds PLL Vqs	PU PU	PLL synchronous d-axis voltage feedback PLL synchronous q-axis voltage feedback						
59 60	PLL Vds PLL Vde	PU PU	PLL synchronous q-axis voltage feedback						
60	PLL Vde PLL sin	PU PU	PLL stationary d-axis voltage reedback						
61	PLL SIN PLL PI Fbk	PU PU	PLL sine PLL regulator feedback						
62	PLL PI FDK PLL Nseq In	PU PU	PLL regulator reedback PLL q-axis negative sequence voltage						
	ad Rotor Test								
(LRT)									
64	LRT theta	PU	LRT small signal angle						
65	LRT sin	PU	LRT small signal sine						
66	LRT theta1	PU	LRT motor electrical angle						
67	LRT Ld	PU	LRT inductance calculation						
68	LRT Id A1	PU	LRT A1 DFT coefficient for current feedback						
69	LRT ld B1	PU	LRT B1 DFT coefficient for current feedback						
70	LRT Vd A1	PU	LRT A1 DFT coefficient for voltage command						
71	LRT Vd B1	PU	LRT B1 DFT coefficient for current command						
72	LRT Ld A1	PU	LRT A1 DFT coefficient for inductance calculation						
73	LRT Ld B1	PU	LRT B1 DFT coefficient for inductance calculation						
74	LRT Ld A2	PU	LRT A2 DFT coefficient for inductance calculation						
75	LRT Ld B2	PU	LRT B2 DFT coefficient for inductance calculation						
	Interface	l							
76	MCSS VEL	mm/sec	Velocity command from MCSS						
77	MCSS ACC	mm/sec^	Acceleration command from MCSS						
	M000 L111	2	Les duraiste (/, services d.f. an NOOO						
78	MCSS LW	%	Load weigh % command from MCSS						
Encoc		/200	Valaaity foodbook, unfiltered (doop not include adjustment at law speeds).						
79	ENC WR	mm/sec	Velocity feedback, unfiltered (does not include adjustment at low speeds). For speed feedback with low speed calculation, see "ENC WR INC"						
80	ENC time	PU	Time accumulated since last encoder edge was detected, in T4 cnts						
80	ENC UMe ENC DELTAM	PU PU							
81	ENC DELTAM	PU PU	Encoder counts captured since last encoder read cycle Time of the last encoder transition						
83	ENC MNEW	PU PU	Encoder count at the beginning of the velocity task						
84	ENC WR S/C	mm/sec	Speed calculated from sinusoidal encoder.						
85	ENC WR 3/C	mm/sec	Speed calculated from sindsoldal encoder. Speed calculation based on incremental pulses for both encoder types.						
86	ENC SIN	PU	Since wave component of sinusoidal encoder.						
87	ENC COS	PU	COSINE wave component of sinusoidal encoder.						
07		10							

88	ENC RES PER	PU	Number of encoder sinusoidal periods passed by during one speed calculation
			cycle (1ms)
	ity Regulators	r	
89	Vel Inner Ref	mm/sec	Inner velocity regulator reference
90	Vel Inner Fbk	mm/sec	Inner velocity regulator feedback, unfiltered
91	Vel Inner Err	mm/sec	Inner velocity regulator error
92	Vel Outer Ref	mm/sec	Outer velocity regulator reference
93	Vel Outer Fbk	mm/sec	Outer velocity regulator feedback, unfiltered
94	Vel Outer Err	mm/sec	Outer velocity regulator error
95	Vel Obser Out Vel Track Err	mm/sec	Velocity Observer Output Tracking error between velocity feedback and observer output
96 97	Vel Notch In	mm/sec mm/sec	Velocity notch filter 1 input
98	Vel Notch Out	mm/sec	Velocity notch filter 1 output
99	Vel Notch2 In	mm/sec	Velocity notch filter 2 input
100	Vel Notch2 Out	mm/sec	Velocity notch filter 2 output
100	VFbkFil[mm/s]	mm/sec	Velocity feedback, filtered
101	VFbkRaw[mm/s]	mm/sec	Velocity feedback, unfiltered
102	Vel Ref[mm/s]	mm/sec	Velocity reference
100	Accel[mm/s^2]	mm/sec^	Car acceleration measured at sheave, as used for PRS compensation.
		2	
Pretor	rque		
105	Pretorque	Amps	Pretorque current reference
106	HitchLoad[kg]	kg	
107	InCarLoad[%]	%	
108	LoadInfoTimer	10ms	
Fan C	ontrol		
109	Fan PWM	PU	Fan PWM duty count
	Count		
110	Fan PWM Duty	PU	Fan PWM duty cycle command, PU
111	Fan PWM Out	PU	Fan PWM signal
	Control	Di l	
112	DBR PWM	PU	DBR PWM duty count
113	Count DBR PWM Duty	PU	DBR PWM duty cycle command, PU
113	DBR PWM Out	PU	DBR PWM signal
	Control	10	
115	BRK_PWM_CO	PU	BRK PWM duty count
110	UNT	10	
116	BRK_PWM_DU	PU	BRK PWM duty cycle command, PU
	TY		
117	BRK_PWM_OU	PU	BRK PWM signal
	Т		
Discre			
	ESTOP Flag	PU	Flag to indicate ESTOP
119	Drive Fault	PU	Flag to indicate drive fault
120	Brk Lifted	PU	Flag to indicate Brake lifted (BL)
121	SX Relay	PU	Flag to indicate S1 and S2 relays are picked
122	DBD	PU	Flag to indicate status of Drive Brake Disconnect (normally-closed contacts of S1, S2, BX1 and BX2 relays)
123	SX N Open	PU	S2, BY1 and BY2 relays) Flag to indicate status of normally-open contact of S1 relay
123	SX N Open Safety Chain	PU PU	Flag to indicate status of Normally-open contact of ST relay
	Counters	FU	I ray to indicate status of Safety Chain input to unive
125	Task 1MS	PU	1 ms task counter
125	Task 10MS	PU	10 ms task counter
120	Task 40MS	PU	40 ms task counter
Drive			
128	Drive State	PU	Enumerated drive state
120	Drive Substate	PU	Enumerated drive state
	al Profile	· · · ·	
Gener			
130	Profile Pos	m	Profile generator relative position (CAN and Manual Mode only)
131	Profile Vel	m/s	Profile generator velocity (CAN and Manual Mode only)
132	Profile Acc	m/s^2	Profile generator acceleration (CAN and Manual Mode only)

133	Profile Jerk m/s^3 Profile generator jerk (CAN and Manual Mode only)								
134	Profile SD	m	Profile generator stopping distance (CAN and manual mode only)						
135	Profile DTG	m	Profile generator distance to go (CAN and manual mode only)						
Auton	natic Load Weigh A	Adjustment							
136	Alwa Gain	%	Automatic Load Weigh Adjustment Gain						
137	Alwa Offset	%	Automatic Load Weigh Adjustment Offset						
	al Profile								
Gener									
138	ProAdv Pos	m	Profile generator relative position advanced by 250ms.						
139	ProAdv Vel	m/s	Profile generator velocity advanced by 250ms.						
140	ProAdv SD								
141	ProAdv FLAG	m/s^3	Profile generator advanced state valid flag.						
	on Regulator (App Position Ref								
142 143	Position Ref Position Fbk	0.1 mm	Position regulator reference (CAN and Manual Mode only)						
143	Position Err	0.1 mm 0.1 mm	Position regulator feedback (CAN and Manual Mode only) Position regulator error (CAN and Manual Mode only)						
144	Position Dtg	0.1 mm	Distance to go to target (CAN and Manual Mode only)						
145	Position Dig Pos Ref (ac)	0.1 mm							
140	Pos Rei (ac) Pos Fbk (ac)	0.1 mm	Position regulator reference, AC-coupled for frequency test Position regulator feedback, AC-coupled for frequency test						
147	Pos Track Err	0.1 mm	Position tracking error (CAN and Manual Mode only)						
140	Pos Direction	PU	Direction command that is latched at the beginning of the run						
-	ndary Magnet Posit								
Estim									
150	Mot d-voltage	PU	Estimated d-axis motor voltage (back-emf)						
151	Mot q-voltage	PU	Estimated d-axis motor voltage (back-emf)						
152	Mot we	mm/s	Motor electrical frequency (accounts for car direction and motor phasing)						
153	Sat factor	PU	Estimate of inductance saturation as a function of current						
154	Magnet err	PU	Difference between magnet position estimate and encoder						
Power	r Calculations								
155	Inv power	W	Inverter power estimate						
156	Cnv power	W	Converter power estimate						
157	Drive p loss	W	Power loss estimate (2Hz filtered)						
158	Drive p loss2	W	Power loss estimate (10Hz filtered)						
159	DC Link Pwr	W	Transient power into DC capacitors C*V*dv/dt						
160	Pre chrg Pwr	W	Power in precharge resistors						
161	Balance R Pwr	W	Power in balance resistors						
162	Reactor Pwr	W	Transient power in line reactor L*di/dt						
163	PLoss Thrsh	W	Power loss threshold for DC capacitor failure detection						
Power	r Factor Control (P								
164	Pfc ref	Duty(%)	Power Factor Control reference						
165	Pfc fbk	Duty(%)	Power Factor Control feedback						
166	Pfc err	Duty(%)	Power Factor Control error						
167	Pfc out	A	Power Factor Control output						
	Weakening Contro	1							
168	Fwc ref	Duty(%)	Field Weakening Control reference						
169	Fwc fbk	Duty(%)	Field Weakening Control feedback						
170	Fwc err	Duty(%)	Field Weakening Control error						
171	Fwc out	A	Field Weakening Control output						
	Orientation								
172	Enc theta(e)	rad	Encoder electrical angle						
173 174	Inv theta Inv thetaSlip	rad	Field Orientation angle (induction motor only)						
174	1	rad	Slip angle (induction motor only) Motor Electrical frequency (based on encoder feedback)						
175	Inv we Flux estimate	mm/s A	Rotor Flectrical frequency (based on encoder fleedback)						
	s (applicable only to								
mode		0 OAN							
177	Vane TransOcc	PU	Flag to indicate PRS transition occurred (CAN Mode only)						
178	PrsSpikesFltd	PU	Count of filtered PRS states, see description in SVT monitor M-1-7						
179	Last SpikeLen	Samples	Length of last filtered PRS state, see description in SVT monitor M-1-7						
180	Vane Last Dev	0.1 mm	Difference between detected and expected transitions (CAN Mode only)						
181	Vane Last Cor	0.1 mm	Last correction made to position feedback (CAN Mode only)						
182	VaneExpValid	PU	Flag indicating that a valid expectation for the next PRS vane transition exists						

Sheet 185 of 213

183	VaneTrnsLoLim	0.1 mm	Lower position limit [0.1mm] for next expected PRS vane transition						
184	VaneTrnsUpLim	0.1 mm	Upper position limit [0.1mm] for next expected PRS vane transition						
-	way Signals	0.111111							
185	HwySigUnfiltd	PU	Hoistway signals (of the PRS) unfiltered						
186	HwySigLpFiltd	PU	Hoistway signals (of the PRS) low pass filtered						
187	HwySig10msTs	PU	Filtered HwySig_1msTsk used by control functions in 10ms task. Only valid						
	k		combinations are accepted.						
188	HSVT Flags	Bitfield	High Speed Vane Tracking states, bit significance: See code						
189	HsBufIndxRead	PU	Hoistway Signal Buffer: Pointer to next read element.						
190	HsBufIdxWrite	PU	Hoistway Signal Buffer: Pointer to next write element.						
191	ZoneMainVane	PU	PRS zone on vane overlapping PRS sensor head most						
192	ZoneOtherVane	PU	PRS zone on potential other vane overlapping PRS sensor head						
193	ZonesAreValid	PU	Flag indicating that PRS signals indicate valid vane zones						
194	DoorZoneSignl	PU	lag indicating to control functions that car is in door zone (active if both LV1 and LV2 are active). Only updated for valid hwy signal combinations.						
195	1LS	PU	The 1LS signal that is receieved over CAN.						
196	2LS	PU	The 2LS signal that is receieved over CAN.						
197	FbkPosErrMarg	PU	Error margin for drive's feedback position in 1/10mm, e.g. set to 20cm (200) for well known position (NORMAL runs).						
198	SS EncPos	0.1mm	Single sensor encoder position, relative to last PRS transition (:=0 at transition).						
199	SS	0.1mm	Maximum value of "SS EncPos" since last PRS transition.						
	maxPosWoTr								
200	SS minPosWoTr	0.1mm	Minimum value of "SS EncPos" since last PRS transition.						
201	SS uprZoneLim	0.1mm	Upper limit mm-position of current vane zone, i.e. of position range w/o PRS transition.						
202	SS lwrZoneLim	0.1mm	Lower limit mm-position of current vane zone, i.e. of position range w/o PRS transition.						
203	SS Flags	PU	Codes flags and states of Single-Sensor algorithms, see source code.						
Floor	Information								
204	Floor.current	PU	Indicates the current floor						
205	Floor.nxtComm	PU	Indicates the next committable floor						
206	Floor.accpTgt	PU PU	Indicates the next committable floor Indicates the accepted target floor						
206 CAN I	Floor.accpTgt nformation	PU	Indicates the accepted target floor						
206 CAN I 207	Floor.accpTgt nformation CanRun.mode	PU PU	Indicates the accepted target floor Describes the type of run that is currently executed						
206 CAN II 207 208	Floor.accpTgt nformation CanRun.mode CanRun.cmd	PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command.						
206 CAN II 207 208 209	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status	PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run.						
206 CAN II 207 208 209 210	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst	PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run.						
206 CAN I 207 208 209 210 211	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta	PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL.						
206 CAN II 207 208 209 210 211 212	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd	PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run.						
206 CAN II 207 208 209 210 211 212 213	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun.						
206 CAN II 207 208 209 210 211 212	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd	PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL.						
206 CAN I 207 208 209 210 211 212 213 214	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the						
206 CAN I 207 208 209 210 211 212 213 214	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when						
206 CAN II 207 208 209 210 211 212 213 214 OPB I	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd nformation Opb.stopCmd	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd nformation	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd nformation Opb.stopCmd Opb.endRunCm	PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215 216	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd opb.stopCmd Opb.endRunCm d	PU PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received.						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215 216 217	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode	PU PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand2 message received.						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215 216 217 218 219	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.prof	PU PU PU PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0.						
206 CAN II 207 208 209 210 211 212 213 214 OPB II 215 216 217 218	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDGL.tgtLdg	PU PU PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.prof	PU PU PU PU PU PU PU PU PU PU PU PU PU	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0.						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDGL.tgtLdg OpbDGL.prof	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221 222 223	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDRL.tgtLdg OpbDGL.tgtLdg OpbDC.cmd OpbDC.cmd	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message Profile index received in a DriveGoToLanding message						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221 222 223	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDRC.prof OpbDGL.tgtLdg OpbDC.cmd OpbDC.cmd OpbDC.cmd	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message Command in DriveCommand message received. Flag for speed check to TCBC (CAN Mode only)						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221 222 223 CAN C 224 225	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDRC.prof OpbDGL.tgtLdg OpbDC.cmd OpbDC.cmd OpbDC.cmd OpbDC.option Communications SpeedCheckFlg RlevPermitTcb	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Option in DriveCommand message received. Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Option in DriveCommand message received.						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221 222 223 CAN C 224 225 226	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.status CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.dir OpbDRC.prof OpbDRL.tgtLdg OpbDGL.tgtLdg OpbDC.cmd OpbDC.cmd OpbDC.cmd OpbDC.cmd OpbDC.cption Communications SpeedCheckFlg RlevPermitTcb LoadDataNotOk	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message Command in DriveCommand message received. Flag for speed check to TCBC (CAN Mode only)						
206 CAN I 207 208 209 210 211 212 213 214 0PB I 215 216 217 218 219 220 221 222 223 CAN C 224 225	Floor.accpTgt nformation CanRun.mode CanRun.cmd CanRun.status CanRun.requst CanRn.ablSta RunHdl.cmd newMsgFlags CanStopCmd Opb.stopCmd Opb.stopCmd Opb.endRunCm d OpbDRC.mode OpbDRC.dir OpbDRC.prof OpbDRC.prof OpbDGL.tgtLdg OpbDC.cmd OpbDC.cmd OpbDC.cmd OpbDC.option Communications SpeedCheckFlg RlevPermitTcb	PU PU PU PU PU PU PU PU PU PU PU PU PU P	Indicates the accepted target floor Describes the type of run that is currently executed Accepted, currently valid run command. Status of ongoing run. Request from within the drive to execute a run. Advanced Brake Lift: 0=ABL_INACTIVE, 1= ABL_ACTIVE, 2= REMOVING_ABL. Command from RunHandler to StateMachine controlling ABL, EndRun. Flag indicating that the drive has received a CAN command to stop or that the state of the limit switches 1LS, 2LS is not known Flag indicating that the drive has received a CAN command to stop. Reset when status is STOPPED Flag indicating that the drive has received a CAN command to end the run with profiled deceleration. Reset when status is STOPPED Mode parameter from DriveRunCommand message received. Direction parameter from DriveRunCommand message received. Note: when DriveRunCommand message is received then this value is = 0. Target landing received in a DriveGoToLanding message Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Option in DriveCommand message received. Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Profile index received in a DriveGoToLanding message Command in DriveCommand message received. Option in DriveCommand message received.						

229	HovRlev State	PU	
-	ity Loop		
230	velOuterKp	PU	Proportinal gain for outer vel loop
231	velOuterKi	PU	Integral gain for outer vel loop
232	velInnerKp	PU	Inner velocity loop gain
233	velLoopB0	PU	Vel loop filter B0 coefficint
234	velLoopA1	PU	Vel loop filter A1 coefficint
	e Observer		
235	Torque I Obs	A	Torque observer output
236	Trq I Obs Fil	A	Torque observer filtered output
237	Trq I Err Fil	A	Torque observer filtered error signal
238	Trq I Obs Err	A	Torque observer error signal
239	Trq Obs Err %	PU	Torque observer fault threshold
	e Lock Loop		
(PLL) 240	PLL Vde Latch	PU	PLL error variable latched before noise injected to it in testmode 4001
240	PLL Vmag Flt	PU	PLL voltage magnitude squared, low-pass filter output at 0.8 Hz.
242	PLL Line2Neut	Volts	PLL line to line voltage in units of volts (rms).
243	PLL Line2Line	Volts	PLL line to neutral voltage in units of volts (ms).
		Rms	
Discre	etes		
244	UIB	PU	UIB Signal State
245	DIB	PU	DIB Signal State
	& JIS test		
246	Brk I Fbk	mA	Brake current feedback (mA) when internal brake control active.
247	InvlqRefMax	Amps	Max of Inv Iq Ref for shock detection
248	InvlqRefMin	Amps	Min of Inv Iq Ref for shock detection
249	AbsInvlqDeff	Amps	Difference of InvIqRefMax and InvIqRefMin
250	shockDetected	PU	Flag of shock detection
251	Vel fbk Out	mm/sec	Velocity feedback, filtered, every 1ms task calculated
252	FlightLength	0.1mm	Flight length of last run
Brake		DU	DV roley feedback (0 dropped/1 picked)
253	BY Relay NC	PU	BY relay feedback (0-dropped/1-picked) BST - brake status feedback (0-dropped/1-picked)
253 254	BY Relay NC Brk Cnt stat	PU	BST - brake status feedback (0-dropped/1-picked)
253 254 255	BY Relay NC Brk Cnt stat BS1	PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1
253 254 255 256	BY Relay NC Brk Cnt stat BS1 BS2	PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2
253 254 255 256 257	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk	PU PU PU Amps	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback
253 254 255 256	BY Relay NC Brk Cnt stat BS1 BS2	PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference
253 254 255 256 257 258	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef	PU PU PU Amps Amps	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback
253 254 255 256 257 258	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef	PU PU PU Amps Amps	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current
253 254 255 256 257 258 259	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos	PU PU Amps Amps PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation
253 254 255 256 257 258 259	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin	PU PU Amps Amps PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current
253 254 255 256 257 258 259 260 260	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos	PU PU Amps Amps PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation
253 254 255 256 257 258 259 259 260	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos	PU PU Amps Amps PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current
253 254 255 256 257 258 259 260 260	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos	PU PU Amps Amps PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation
253 254 255 256 257 258 259 260 261 261	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos	PU PU Amps Amps PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation
253 254 255 256 257 258 259 260 261 261 262 263	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2	PU PU Amps Amps PU PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34)
253 254 255 256 257 258 259 260 261 261	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos	PU PU Amps Amps PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of d- axis voltage needed to achieve 6th harmonic inverter current regulation
253 254 255 256 257 258 259 260 261 262 263 263	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2	PU PU Amps Amps PU PU PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a
253 254 255 256 257 258 259 260 261 262 263 263	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2 Inv Iq Kg2	PU PU Amps Amps PU PU PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a
253 254 255 256 257 258 259 260 261 262 263 263 264 Advar	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2 Inv Iq Kg2	PU PU Amps Amps PU PU PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34)
253 254 255 256 257 258 259 260 261 262 263 264 Advar 265	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2 Inv Iq Kg2 Car PosRx	PU PU Amps Amps PU PU PU PU PU PU PU	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34) The relative car position as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the top
253 254 255 256 257 258 259 260 261 262 263 263 264 Advar 265 266	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th sin Vq 6th cos Inv Id Kg2 Inv Iq Kg2 Car PosRx Car Pos Latch	PU PU Amps Amps PU PU PU PU PU PU trol (AHC) 0.1mm	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34) The relative car position as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the top of car encoder/sensor The change in car position during a run as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the
253 254 255 256 257 258 259 260 261 262 263 264 Advar 265 266 266 267 268	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th cos Inv Id Kg2 Inv Id Kg2 Inv Id Kg2 Car PosRx Car Pos Latch Car Pos Delta MachPos Latch	PU PU Amps Amps PU PU PU PU PU PU trol (AHC) 0.1mm 0.1mm 0.1mm	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34) The relative car position as received from the top of car encoder/sensor The relative car position as received from the top of car encoder/sensor The change in car position during a run as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the machine encoder
253 254 255 256 257 258 259 260 261 262 263 264 Advar 265 266 266 267 268	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th cos Inv Id Kg2 Inv Id Kg2 Inv Id Kg2 Car PosRx Car Pos Latch Car Pos Delta MachPos Delta	PU PU Amps Amps PU PU PU PU PU PU trol (AHC) 0.1mm 0.1mm 0.1mm	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34) The relative car position as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the top of car encoder/sensor The change in car position during a run as received from the machine encoder The change in car position during a run as received from the machine encoder
253 254 255 256 257 258 259 260 261 262 263 264 Advar 265 266 266 267 268	BY Relay NC Brk Cnt stat BS1 BS2 BrkCurFbk BrkCurRef Vd 6th sin Vd 6th cos Vq 6th cos Inv Id Kg2 Inv Id Kg2 Inv Id Kg2 Car PosRx Car Pos Latch Car Pos Delta MachPos Latch	PU PU Amps Amps PU PU PU PU PU PU trol (AHC) 0.1mm 0.1mm 0.1mm	BST - brake status feedback (0-dropped/1-picked) BS1 - brake switch 1 BS2 - brake switch 2 Brake Current Feedback Brake Current Reference component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of q- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation component of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of d- axis voltage needed to achieve 6th harmonic inverter current regulation The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Ld sat/ sat slope in M(4)34) The amount of gain reduction in the 6th harmonic inverter current regulator as a function of gain scheduling tuning parameters (see Lq sat/ sat slope in M(4)34) The relative car position as received from the top of car encoder/sensor The relative car position as received from the top of car encoder/sensor The change in car position during a run as received from the top of car encoder/sensor The latched relative car position at the beginning of a run as received from the machine encoder

272	AHC Dyne Fin	mm/sec	The advanced hovering control dyne resonance filter input						
273	AHC Dyne Fout	mm/sec	The advanced hovering control dyne resonance filter output						
274	AHC Notch In	mm/sec	The advanced hovering control notch filter input						
275	AHC Notch Out	mm/sec	The advanced hovering control notch filter output						
276	AHCPermissive	PU	The advanced hovering control run permissive (0–AHC not active, 1–AHC active)						
Self C	Commissioning	•							
277	Self Result1	various	These and the next 3 parameters take on different meanings depending on which self commissioning test is running. See Section 7.2 for further details.						
278	Self Result2	various							
279	Self Result3	various							
280	Self Result4	various							
Softw	are Test								
281	Ref(ac)	PU	Regulator reference variable with major dc component removed, when the drive in in the associated test mode.						
282	Err(ac)	PU	Regulator error variable, when the drive in in the associated test mode. The ac signifier is for consistency in the notation.						
283	Fbk(ac)	PU	Regulator feedback variable with major dc component removed, when the drive in						
	- ()	-	in the associated test mode.						
284	Cmd(ac)	PU	Regulator output when the drive in in the associated test mode. The ac signifier is						
	, , ,		for consistency in the notation.						
285	Test Frac 1	PU	Test variable for fractional data type						
286	Test Frac 2	PU	Test variable for fractional data type						
287	Test Frac 3	PU	Test variable for fractional data type						
288	Test Frac 4	PU	Test variable for fractional data type						
289	Test Frac 5	PU	Test variable for fractional data type						
290	Test Frac 6	PU	Test variable for fractional data type						
291	Test VFrac1	PU	Test variable for fractional data type						
292	Test VFrac2	PU	Test variable for fractional data type						
293	Test VFrac3	PU	Test variable for fractional data type						
294	Test VFrac4	PU	Test variable for fractional data type						
295	Test Int 1	PU	Test variable for integer data type						
296	Test Int 2	PU	Test variable for integer data type						
297	Test Int 3	PU	Test variable for integer data type						
298	Test Int 4	PU	Test variable for integer data type						
299	Test Int 5	PU	Test variable for integer data type						
300	Test Int 6	PU	Test variable for integer data type						
301	Test Long 1	PU	Test variable for long data type						
302	Test Long 2	PU	Test variable for long data type						
303	Test Long 3	PU	Test variable for long data type						
304	Test Long 4	PU	Test variable for long data type						
305	Test Flag 1	PU	Test variable for flag data type						
306	Test Flag 2	PU	Test variable for flag data type						
307	Test Flag 3	PU	Test variable for flag data type						
308	Test Flag 4	PU	Test variable for flag data type						
309	Debug Int 1	PU	Debug variable for int data type						
310	Debug Int 2	PU	Debug variable for int data type						
311	Debug Int 3	PU	Debug variable for int data type						
312	Debug Int 4	PU	Debug variable for int data type						
313	Debug Int 5	PU	Debug variable for int data type						
314	Debug Int 6	PU	Debug variable for int data type						
315	Debug Frac 1	PU	Debug variable for frac data type						
316	Debug Frac 2	PU	Debug variable for frac data type						
317	Debug Frac 3	PU	Debug variable for frac data type						
318	Debug Frac 4	PU	Debug variable for frac data type						

7.2 Self Commissioning DAT variables

The self commissioning DAT variables take on different meanings depending upon which self commissioning test is running. The table below summarizes the meanings for each test.

Test Self Result 1		Self Result 2	Self Result 3	Self Result 4	
Kp Test	Kp Test gain				
Ki Test	Ki Test gain				
Lsigma Test		lsigma (mH)			
Sweep Test	freq (Hz)	Re Z (Ohm)	lm Z (mH)	Im Z - Isigma (mH)	
			RTC via Re Z		
RTC via Re Z	freq (Hz)	Re Z (Ohm)	(sec)		
RTC via Im Z	freq (Hz)		RTC via Im Z (sec)	Im Z - Isigma (mH)	
Fine tune Vd		Vd err	Self.filt.out	Fine tune state	
Inertia	MRAS Out	MRAS err	MRAS x	Vel.outer.fbk	

7.3 Signal Groups

It is often desired to observe one signal simultaneously with several other closely related signals. The most common groupings of signals can be selected using the signal groups box on the DAT, and are listed in the following table.

Signal Group Name	Description					
Inv lxyz	Inverter stationary current feedbacks: ix, iy, iz					
Inv Id	Inverter synchronous d-axis regulator: idref, idfbk, iderr, idout					
Inv Iq	Inverter synchronous q-axis regulator: iqref, iqfbk, iqerr, idout					
Inv Vdq	Inverter synchronous voltage commands: vde, vqe, vds					
Inv PWM	Inverter PWM voltage commands: vx, vy, vz					
Cnv Ixyz	Converter stationary current feedbacks: ix, iy, iz					
Cnv Id	Converter synchronous d-axis regulator: idref, idfbk, iderr					
Cnv Iq	Converter synchronous q-axis regulator: iqref, iqfbk, iqerr					
Cnv Vdq	Converter synchronous voltage commands: vde, vqe, vds,					
Cnv PWM	Converter PWM voltage commands: vx, vy, vz					
Vbus	Bus voltage regulator: vref, vfbk, verr					
PLL	Phase Lock Loop (PLL) stationary voltage: vds, vqs, pllsin					
LRT	Lock Rotor Test (LRT): smsg_angle, smsg_sin, Ld_theta, Ld					
Inner Vel	Inner velocity regulator: vref, vfbk, verr					
Outer Vel	Outer velocity regulator: vref, vfbk, verr					
Vel Notch	Velocity notch filter #1: in, out					
Cnv Notch	Converter notch filter: in, out					
PLL LPF	Phase Lock Loop (PLL) low pass filter: in, out					
Fan PWM	Fan PWM variables: count_duty, duty, out					
DBR PWM	Not used (was applicable only for non-regen drives).					
Inv Dead Comp	Inverter dead-time compensation: vx, vy, vz					
Cnv Dead Comp	Converter dead-time compensation: vx, vy, vz					
Test Frac IO	General test signals for software development: ch1, ch2, ch3, ch4					
Test Int IO	General test signals for software development: ch1, ch2, ch3, ch4					
Test Long IO	General test signals for software development: ch1, ch2, ch3, ch4					
Test Flag IO	General test signals for software development: ch1, ch2, ch3, ch4					
LRT Id DFT	Locked Rotor Test (LRT) Discrete Fourier Transform (DFT) Coefficients for id: a1, b1					
LRT Ld DFT	Locked Rotor Test (LRT) Discrete Fourier Transform (DFT) Coefficients for Ld: a1, b1					
MCSS Commands	Signals from MCSS: Vel, Acc, LW					
Encoder	Encoder related signals					
Brk PWM	Brake PWM variables: count_duty, duty, out					
Pretorque	Pretorque command, brake lifted, velocity regulator output, inv iq fbk					
Inv IMAGSQRT	Inverter current magnitude					
SX	SX pick command, DBD, S1_NO, Safety chain					
Profile Gen	Profile Generator: pos, vel, accel, jerk					
Position	Position regulator: reference, feedback and error					
Magnet Pos	Magnet Position Estimator: Vd, Vq, we					
Drive Pow	Power estimates: Inv, Cnv, Loss					
Pfc	Power Factor Controller: reference, feedback, error, out					
Fwc	Field Weakening Controller: reference, feedback, error, out					
Vane	Correction-to-Vane related signals					
Rlev+SpdChk	Releveling and speed check related signals					
Self Comm	Self Result1, Self Result2, Self Result3, Self Result4					
Freq Test	Used for loop tuning					
User 1	User-Defined Group #1 (See Document #55744 for additional details)					
User 2	User-Defined Group #2 (See Document #55744 for additional details)					
User 3	User-Defined Group #3 (See Document #55744 for additional details)					
User 4	User-Defined Group #4 (See Document #55744 for additional details)					

8 Engineering Test Modes

Several test modes are available that are useful in the development and tuning of drives. The test modes are expected to be used by Otis Engineering personnel only.

8.1 Overview

Test modes provide the capability to measure and adjust the performance of the drive control loops as well as perform other tests. The test modes are activated by using the engineering version of the Data Acquisition Tool (DAT), Software Configuration Number AAA30959AAA.

- The engineering version of the Data Acquisition Tool (DAT) allows special commands to be sent to the drive. The DAT must be active in order to enable the test modes.
- In certain test modes, an internal white noise generator is used to generate a test signal with broadband frequency content. It is injected into the control loop under test as determined by the test mode setting. The amplitude of the test signal is controlled by REF 1 in the DAT. Certain test modes also have additional offset signals controlled by REF 2 and REF 3.
- Test signals can be displayed in one of two ways. First, they can be displayed at full bandwidth (10kHz) on an oscilloscope or spectrum analyzer using the D/A converters on the Option Board. Alternatively, the signals can be digitally saved to a binary file using the DAT, but at reduced bandwidth (1kHz). The signals to be displayed are automatically determined by the test mode selected.

A list of available test modes is shown in Table 8-1.

Test Mode Description
Normal Mode (MCSS or TCB-CAN)
Torque Test Mode
Rotating Current Vector Test Mode
Inner Velocity Test Mode
Outer Velocity Test Mode
Position Loop test mode
Magnetizing Current Test Mode (inv d –axis)
PWM Open-Loop Test Mode
Converter -Current Test Mode
DC Bus Voltage Test Mode
Power Factor Control (PFC) Test Mode
Field Weakening Control (FWC) Test Mode
Manual mode
Profile test mode
Magnet alignment test mode
Velocity notch filter test mode

Table 8-1 Test Modes

8.2 Enabling and Changing Test Modes

Special care must be taken when enabling a test mode or equipment damage may result! For example, feeding a constant torque current to an unloaded machine can cause the speed to increase out of control!!

- 1. Attach a RS232-to-RS422 converter cable from the host PC to the drive service tool port.
- 2. Run the Data Acquisition Tool (DAT) on the host PC and verify communication.
- 3. Verify that both the PREPARE TO RUN and LIFT BRAKE switches are OFF. The drive will not enter test mode unless both of these commands are OFF.
- 4. Set the desired test mode by changing the test mode setting in the DAT.

When in a test mode, the safety chain is monitored and must be established. Jumpers may have to be added to allow the drive to run in test mode.

8.3 Exiting Test Modes

To terminate test mode operation, set the drive mode setting to normal. Discontinuing use of the Data Acquisition Tool (DAT) will also disable any of the test modes.

8.4 Test Mode I/O

Table 8-2 provides a reference of the test mode I/O. In the Table, the following abbreviations are used:

- REF Data Acquisition Tool (DAT) reference
- CH data logger channel or D/A channel
- ref control loop reference signal
- fbk control loop feedback signal
- err control loop error signal
- out control loop output signal

Test Mode		Inputs	Outputs				
	REF 1	REF 2	REF 3	CH 1	CH 2	CH 3	CH 4
NORMAL	-	-	-	-	-	-	-
Torque (Iq)	Noise Amplitude	lq Offset	ld ref	lq ref	lq fbk	lq err	lq out
Motor Current Rotating Vector	Amplitude	Frequency	-	lx	ly	lz	ld
Inner Velocity	Noise Amplitude	-	ld ref	Vinner ref	Vinner fbk	Vinner err	Vinner out
Outer Velocity	Noise Amplitude	-	-	Vouter ref	Vouter fbk	Vouter err	Vouter out
Position	Noise Amplitude	Pos offset	-	Pos ref	Pos fbk	Pos err	Pos out
Magnetizing Current (Id)	Noise Amplitude	Inv Id Offset	-	ld ref	ld fbk	ld err	ld out
Open-Loop PWM	X-phase duty	Y-phase duty	Z-phase duty	X duty	Y duty	Z duty	-
Converter d-axis Current	Noise Amplitude	Cnv Id Offset	-	Cnv Id ref	Cnv Id fbk	Cnv Id err	Cnv Id out
Bus Voltage	Noise Amplitude	Offset	-	Vb ref	Vb fbk	Vb err	Vb out

Document: 55661

Sheet 192 of 213

r							
PFC	Noise	Offset	_	PFC	PFC	PFC	PFC
110	Amplitude	Oliset	_	ref	fbk	err	out
FWC	Noise	Offset		FWC	FWC	FWC	FWC
FVVC	Amplitude	Olisei	-	ref	fbk	err	out
Manual		-		-	-	-	_
Ivialiual	-	-	-	-	-	-	-
PROFILE		_		Profile	Profile	Profile	Profile
FROFILE	-	-	-	Pos	vel	Acc	Jerk
Align Magnet	_	ld Offset		ld ref	ld fbk	ld err	Vd
Alight Magnet	_	iu Oliset	_	lu lei		iu en	vu
	Noise			Vel	Vel		Inv Iq
Velocy Notch		offset		Notch 1	Notch 1	Inv Iz	Fbk
-	Amplitude			In	Out		FUK
	Noise		Gain				
PLL	Amplitude	-	Selection	-	-	-	-

Table 8-2 Test Mode I/O

8.5 Test Mode Descriptions

Test Mode	Description
NORMAL	
Torque	In this mode, the current in the motor is regulated, but the speed is not. The torque control of the system can be tuned by using white noise as the torque reference and measuring the frequency response of the control loop. A torque offset may be specified, as well as a d-axis current offset. The currents produced by the drive are limited to the current limit of the drive.
Rotating Current Vector	In this mode, a rotating current vector is produced. The amplitude and frequency are independently adjustable. The currents produced by the drive are limited to the current limit of the drive.
Inner Velocity	In this mode, the inner velocity loop can be tuned by adding white noise to the inner velocity reference. The reference for the inner velocity loop is the sum of the normal velocity reference and the internal white noise source. A d-axis current may also be specified. The outer velocity loop is bypassed.
Outer Velocity	In this mode, the outer velocity regulator can be tuned by adding white noise to the outer velocity regulator reference. The reference for the outer velocity loop is the sum of the normal velocity reference and the internal white noise source.
Position	In this mode, the position regulator can be tuned by adding white noise to the position reference. An offset can also be specified. The reference for the Position loop is the sum of the internal white noise source and the normal reference.
Magnetizing Current	In this mode, the current in the motor is regulated, but the speed is not. The current regulator can be tuned by using white noise as the magnetizing current reference. A current offset may also be specified. The currents produced by the drive are limited to the current limit of the drive.
Open-Loop PWM	In this mode, the inverter and converter operate in open loop, i.e. currents are not regulated. The PWM duty cycle of each phase is independently adjustable. <i>This mode should NEVER be used with voltage on the DC link or damage to the IGBT's may result from uncontrolled output currents!</i> The PWM duty cycles for inverter X, Y, Z and converter R, S, T phases are obtained from Data Acquisition Tool (DAT) REF 1, 2, and 3, respectively.
Converter d-axis Current	In this mode, the converter current regulator can be tuned by adding white noise to the d- axis current reference. The reference for the d-axis converter current regulator is the sum of the normal reference and the internal white noise source. An offset current can also be specified.

Bus Voltage	In this mode, the voltage regulator can be tuned by adding white noise to the bus voltage reference. The reference for the bus voltage regulator is the sum of the normal reference and the internal white noise source.
PFC	In this mode, the power factor control (PFC) can be tuned by adding a white noise to the PFC reference. The reference for the PFC is the sum of the internal white noise source and the offset reference.
FWC	In this mode, the field weakening control can be tuned by using white noise as the FWC reference. The reference for the FWC is the sum of the internal white noise source and the offset reference.
MANUAL	This modes allows the drive to run in a simulated manula mode where the up down buttoms are commanded via the DAT up/down arrows buttoms
PROFILE	This test modes tests the drive profile generator where the distance to travel is entered via the SVT engineering menu (Target) in M462. The run command is initiated similar to the MANUAL mode above.
Align Magnet	In this test mode the drive applies d-axis current to the motor phases (basically x-phase current while y and z phases half of the current with reversed polarity) to align the magnets with the x-phase such that the locked rotor angle offset MagErr1 MagErr2 in menu 1-8 is calculated to be 0 degrees. This test mode is used to verify the locked rotor test. After application of d-axis current to the motor in this test mode while brake is lifted will result in a locked rotor test result of zero degrees (MagPos /LRT eDeg).
PLL	This test mode is not DAT initiated test mode. To initiate this test mode the engineering parameter in M(4)62 "Engineering Test" is set to 4001 (4 for inverter, 0 for convertere PWM disabled, 0 for inverter PWM disabled, 1 for PLL test mode). After setting this DAT REF 1 controls noise into the loop. DAT REF3 controls high and low gain selection. Positive entry for DAT REF3 selects high bandwidth gains for the PLL loop while negative entry selects low bandwidth gains.

9 Pre-Defined Motor Parameters

When the parameter Motor Type is set to a pre-defined motor type (other than 901 or 902), the subsequent motor parameters are automatically set as shown in the following table and cannot be modified.

Motor Model	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2
	1.5T	1.5T	1.5T	2.5T	2.5T	2.5T	2.5T	2.5T	2.5T
Otis P/N A*A20220-	AV102 AV112 AV121 AV141 AV142 AV151 AV152 AV202 AV202 AV212 AV241 AV242 AV251 AV252	AV104 AV114 AV122 AV143 AV144 AV153 AV154 AV204 AV204 AV214 AV243 AV244 AV253 AV254	Proto	AK	AV301, AV302 AV311, AV312 AV322, AV311 AV342, AV351 AV352, AV372 AV401, AV402 AV407 AV411, AV402 AV407 AV411, AV412 AV422 AV441, AV442 AV446, AV447 AV451, AV452	AV303-AV306 AV313-AV316 AV324 AV343 AV344 AV353 AV354 AV374 AV403-AV406 AV408, AV409 AV413-AV416 AV424 AV443, AV444 AV448, AV449 AV453, AV454	Proto	Proto	Proto
3-1 CONTRACT									
Motor Type	101	102	191	202	203	204	290	291	293
3-4 MACHINE									
Number of Poles	10	10	10	10	10	10	10	10	10
Rated Trq Nm	106	106	105	165	170	170	165	165	165
Rated Trq I A	7.3	12	13	30	12.8	19.3	21	28	19.4
Ld mH	112 144	46.5 59	36 45	11.7 14	54.9 65.1	27.5 30.0	28 33	11 11.5	22 30.5
Lq mH R Ohm	144	0.7	45 1	0.7	1	0.7	0.395	0.7	0.7
R Ohm T/A Slope %	23	26.89	35.4	47.8	20	18.66	0.395	0.7	48.0
T/A Offset A	0	1.3	5.99	12	0	2.2	0	0	40.0
Kt Slope 1/kNm	0	0	2.53	1.28	0	0	0	0	1.25
Id Saturation A	2.29	6.5	5	20	7.4	11.0	12.5	20	12
Iq Saturation A	0	0	2.5	0	2.0	3.5	3.13	15	0
Ld Slope mH/A	11.89	2.26	1.98	0.216	3.53	0.73	0.828	0.156	0.678
Lq Slope mH/A	7.52	1.56	1.26	0.128	2.47	0.71	0.9	0.157	0.523
Lq0 mH	148.3	62.7	45	14	87.9	37	33	11.5	30.5
Lq1 1/mA	38.3	43.9	0	0	50.9	24.3	0	0	0
Lq2 1/mA^2	5	400	0	0	700	200	0	0	0
LdO mH	70.7	29	36	11.7	45.4	20	28	11	22
Rated Mag I A	-	-	-	-	-	-	-	-	-
Peak Mag I A	-	-	-	-	-	-	-	-	-
Rtr Time Const s	-	-	-	-	-	-	-	-	-
Rated Motor rpm	371	661	661	661	371	661	377	661	661
Mag err thr eDeg	20	20	20	20	20	20	20	20	20
Fld Wkn Lvl %	100	100	100	100	100	100	100	100	100
Fld Wkn BW Hz	10	10	10	10	10	10	10	10	10
Machine Parameters not in SVT									
Turns Per Coil (TPC)	52	33	31	14	30	21	21	14	20
Machine Inertia (kg-m ²)	0.109	0.109	0.109	0.17	0.17	0.17	0.17	0.17	0.17
Sheave Diametr (mm)	103	103	103	103	103	103	103	103	103

Sheet 19	95 of	213
----------	-------	-----

Motor Model	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2		Test IM
Winding designation:			W1	W3 (G/G2/G3)	W2	W4	W5	
Otis – W# (Kollmorgan letter) Otis machine name	5TA	5TA	(E) 5TA	5TB, C & D	(H) 5TB	(F/F2/F3) 5TC & D	(J) 5TA	27KW
Otis P/N AAA20220- ABA20220 -	AN- 3SP Proto	Proto	AS1 AS11 AS21 AS31 AS101 AS122 AS133 AS134	AS3, AS13 AS23, AS33 AS51, AS53 AS55 AS61, AS63 AS71, AS73 AS75, AS77 AS81, AS83 AS103 AS136 AS151, AS153 AS155 AS171, AS173 AS175, AS177 AS181, AS183	AS2 AS12 AS22 AS32 AS102 AS135	AS52, AS54 AS56 AS62, AS64 AS72, AS74 AS76, AS78 AS82, AS84 AS152, AS154 AS156 AS172, AS174 AS176, AS178 AS182, AS184	AS5 AS15 AS25 AS26 AS105 AS126 AS131 AS132	Proto
3-1 CONTRACT								
Motor Type	391	392	393	394	395	396	398	491
3-4 MACHINE								
Number of Poles	8	8	8	8	8	8	8	4
Rated Trq Nm	310	310	310	392	394	302	310	129
Rated Trq I A	63	33.9	30	41	32.3	39	16.9	57
Ld mH	6.5	21	28	15	21.8	10.2	69	1
Lq mH	8.5	27	40	22	35.7	14.5	85.8	1
R Ohm	0.7	0.8	0.6	0.3	0.3	0.3	0.8	1
T/A Slope %	37.4	56.7	51.45	31.9	32.1	33.82	46.5	-
T/A Offset A	12	15	9	2	1.4	10	5	-
Kt Slope 1/kNm	0	0.69	0.57	0.65	0.57	0.84	0	-
Id Saturation A	10	10	5	15	7	15	5	-
Iq Saturation A	0	0	0	0	0	0	0	-
Ld Slope mH/A	0.105	0.465	0.629	0.22	0.47	0.18	2.8	-
Lq Slope mH/A	0.042	0.247	0.343	0.19	0.35	0.11	1.31	-
Lq0 mH	8.5	33.1	69	38	45.2	19	121.5	1
Lq1 1/mA	0	10.69	34.7	28	28.7	14.5	33.9	10
Lq2 1/mA^2	0	38.33	138.8	100	200	60	200	20
LdO mH	6.5	21	20	11	23	9.5	50	1
Rated Mag I A	-	-	-	-	-	-	-	22.4
Peak Mag I A	-	-	-	-	-	-	-	50
Rtr Time Const s	-	-	-	-	-	-	-	0.28
Rated Motor rpm	576	576	576	648	518	822	324	1489
Mag err thr eDeg	20	20	20	20	20	20	20	-
Fld Wkn Lvl %	100	100	100	100	100	100	100	-
Fld Wkn BW Hz	10	10	10	10	10	10	10	-
Machine Parameters not in SVT								
Turns Per Coil (TPC)	20	36	17	12	15	10	30	?
Machine Inertia (kg-m ²)	0.4	0.4	0.4	0.48	0.48	0.4	0.4	0.25
Sheave Diametr (mm)	118	118	118	118	118	118	118	-

Note 1: Set to 902 for the user defined motor type and enter parameters in menu 3-4 since a predefined motor type does not yet exist in the software baseline for this machine.

Sheet 196 of 213

	Blue	Blue	Blue	Blue	Blue	Gen2
Motor Model	light	light	light	light	light	R2
	3T	3T	5T	6T	6T	5T
Otis P/N						
DAA20220-	B17	B19	C1	D3	D1	Proto
3-1 CONTRACT						
Motor Type	205	206	301	401	402	397
3-4 MACHINE						
Number of Poles	20	20	20	20	20	8
Rated Trq Nm	665	665	700	1280	1280	310
Rated Trq I A	11.5	21.3	29.7	31.8	48.1	66
Ld mH	116	35.6	26.5	36.8	17.9	3.62
Lq mH	105	32.6	21	32.9	17	5.2
R Ohm	4.95	1.65	0.92	0.62	0.32	0.6
T/A Slope %	29.1	16	23	21.5	24	25.3
T/A Offset A	2	4	6	6	10	2
Kt Slope 1/kNm	0	0	0	0	0	0
Id Saturation A	10	15	35	30	30	20
Iq Saturation A	3	15	30	25	30	0
Ld Slope mH/A	3.55	1.2	0.37	0.48	0.22	0.03
Lq Slope mH/A	0.91	0.23	0.2	0.25	0.07	0.01
Lq0 mH	105	32.6	19.2	35.1	18	8.3
Lq1 1/mA	0	0	0	0	0	11.1
Lq2 1/mA^2	0	0	0	0	0	20
LdO mH	85	26	18.58	23.17	12	3.62
Rated Mag I A	-	-	-	-	-	-
Peak Mag I A	-	-	-	-	-	-
Rtr Time Const s	-	-	-	-	-	-
Rated Motor rpm	96	168	234	139	199	809
Mag err thr eDeg	20	20	20	20	20	20
Fld Wkn Lvl %	100	100	100	100	100	100
Fld Wkn BW Hz	2.5	2.5	2.5	2.5	2.5	2.5
Machine Parameters						
not in SVT						
Turns Per Coil (TPC)						?
Machine Inertia (kg-m ²)						?
Sheave Diametr (mm)						118

Sheet 1	97 o	f 213
---------	------	-------

Motor Model	Reivaj	Reivaj	Reivaj	Test Motor at Jabil	Gen2 Green Power (GGP) Vector 630kg 1.0m/s	Gen2 Green Power (GGP) Vector 1000kg 1.0m/s	Gen2 Green Power (GGP) Comfort 630kg 1.75m/s	Gen2 Green Power (GGP) Premier 630kg 1.0m/s	Gen2 Green Power (GGP) Premier 630kg 1.75m/s
Otis P/N *AA20220-	ТАА	T_A 20220 S101 S111 S121 S501 S521 S251 S551 S551	ТАА	-	TAA202 20Z1 Z6 Z7	TAA202 20Z11 Z16 Z17	TAA202 20X201 X251 X252 X253 X551 X551 AX1 AX2	TAA202 20AJ1 AJ2 AJ502 AJ3 AJ503 AJ4 AJ504	TAA202 20AJ11 AJ12 AJ512 AJ13 AJ513 AJ14 AJ514
3-1 CONTRACT									
Motor Type	520	521	522	292	103	104	105	208	209
3-4 MACHINE									
Number of Poles	10	10	10	4	10	10	10	10	10
Rated Trq Nm	45	63.4	83.3	70	59.3	77.8	83.3	106.6	106.6
Rated Trq I A	7.48	10.6	14.12	30	6.65	7.4	14	7.6	13.6
Ld mH	30	43.2	17	10.0	108	105	36	108	40
Lq mH	62	55.3	36	10.0	146	150	46	147	53
R Ohm	3.7	2.5	1.58	0.7	7.7	5.1	1.8	5.5	1.9
T/A Slope %	40	36.6	21	0	0	30	0	65	40
T/A Offset A	0.0	3.5	0.0	0	0	0	0	6	8
Kt Slope 1/kNm	0.0	0.0	0.0	0	0	0	0	0	0
Id Saturation A	0.0	4.4	0.0	0.0	2.2	0	6	2.2	4
Iq Saturation A	4.0	2.3	2.8	0.0	1.5	3.5	1	1.9	2.8
Ld Slope mH/A	0.0	1.37	0.0	0.0	4.6	0	1.2	5.9	1.5
Lq Slope mH/A	3.076	1.78	1.305	0.0	9.4	4.5	1.15	6.3	1.28
Lq0 mH	62	55.3	36	10	146	150	46	147	53
Lq1 1/mA	0	0	0	0	0	0	0	0	0
Lq2 1/mA^2 Ld0 mH	30	0 43.2	17	10	98	105	36	86	32
Rated Mag I A		43.2	-	10	- 90	-		- 00	- 52
Peak Mag I A	-	-	-	20	-	-	-	-	-
Rtr Time Const s	_		-	-	_	-	_	-	_
Rated Motor rpm	480	477	480	1000	477	477	835	371	649
Mag err thr eDeg	20	20	20	20	20	20	20	20	20
Fld Wkn Lvl %	100	100	100	100	100	100	100	100	100
Fld Wkn BW Hz	10	100	10	100	10	100	10	10	100
Machine Parameters not in SVT									
Turns Per Coil (TPC)									
Machine Inertia (kg-m ²)									
Sheave Diametr (mm)									
	1						1	I	

Document: 55661

Sheet 198 of 213

Motor Model	PM138	PM138	PM138	PM138	PM138	PM138
	Type1-J	Type2-J	Type2A-J	Type1-C	Type2-C	Type2A-C
Otis P/N						
J A20227 -	AAG 1-99	AAA 1-99	AAJ 1-99	AAG 101-	AAA 101-	AAJ 101-
3-1 CONTRACT						
Motor Type	711	712	713	714	715	716
Motor Type		712	7.10	714	710	110
3-2 ADJUSTMENT						
Track Error mm/s	150	150	150	150	150	150
No Enc VThrs PU	0.2	0.2	0.2	0.2	0.2	0.2
No enc flt t sec	0.4	0.4	0.4	0.4	0.4	0.4
3-3 BRAKE						
Brk Pick A	4.03	4.03	4.03	4.03	4.03	4.03
Brk Pick %	85	85	85	85	85	85
Brk Hold A	1.94	1.94	1.94	1.94	1.94	1.94
Brk OCT A	7	7	7	7	7	7
Brk R ohm Brk L H	31 3.0	31 3.0	31 3.0	31 3.0	31 3.0	31 3.0
Brk L H Brk I bw pick Hz	3.0	3.0 1.5	3.0 1.5	3.0	3.0 1.5	3.0
Brk I bw pick Hz Brk I bw hold Hz	0.5	0.5	0.5	0.5	0.5	0.5
3-4 MACHINE	0.0	0.0	0.0	0.0	0.0	0.0
	24	24	24	24	24	24
Number of Poles Rated Trg Nm	24 1107	24 1470	24 1303	24 1107	24 1470	24 1303
Rated Irq I A	62.9	81	95.9	62.9	81	95.9
Ld mH	5.5	2.6	1.98	4.8	3.9	2.3
Lq mH	4.9	4.1	2.3	4.65	3.85	2.22
R Ohm	0.16	0.153	0.05	0.25	0.2	0.15
T/A Slope 🖇	0	0	0	0	0	0
T/A Offset A	0	0	0	0	0	0
Kt Slope 1/kNm	0	0	0	0	0	0
Id Saturation A	55	65	65	45	55	70
Iq Saturation A	65	65	65	22	10	20
Ld Slope uH/A	17	3.1	2.8	18	11.3	5.7
Ld Slope mH/A	0.02	0	0	0.02	0.01	0.01
Lq Slope uH/A	9.5 0.01	6.9 0.01	3.0 0	7.5 0.01	4.1 0	1.3 0
Lq Slope mH/A Lq0 mH	4.9	4.1	2.3	4.65	3.85	2.22
Lq0 mH Lq1 1/mA	4.9	4.1 0	2.3	4.65	0	0
Lq2 1/mA^2	0	0	0	0	0	0
Ld0 mH	5.5	2.6	1.98	4.8	3.9	2.3
Rated Motor rpm	255	255	255	255	255	255
Mag err thr eDeg	20	20	20	20	20	20
LRT AC Level PU	0.09	0.09	0.09	0.09	0.09	0.09
LRT DC Level PU	0.15	0.15	0.15	0.15	0.15	0.15
LRT mot err eDeg	8	8	8	8	8	8
Fld Wkn Lvl %	100	100	100	100	100	100
Fld Wkn BW Hz	10	10	10	10	10	10
Machine Parameters						
not in SVT	69	57	43	69	57	43
Turns Per Coil (TPC)	69 22	22	43 22	69 23	23	43 23
Machine Inertia (kg-m ²) Sheave Diametr (mm)	600	600	600	600	600	600
Sileave Diametr (mm)	000	000	000	000	000	000

Sheet 199 of 213

Motor Model	BOMCO3	BOMCO3	BOMCO3	BOMCO3	BOMCO3	BOMCO3
Brake	Any brake	ANSI	ANSI	ANSI	EN 3	EN 4
	DA	3 brakes	4 brakes	5 brakes	brakes	brakes
Otis P/N	D_A 20220					
J_A20227	AK					
3-1 CONTRACT						
Motor Type	721	723	724	725	726	727
3-3 BRAKE						
Brk Pick A		6.75	9.00	11.25	7.76	10.35
Brk Pick %		85	85	85	85	85
Brk Hold A		3.3	4.4	5.5	3.8	5.1
Brk OCT A		10	12	15	11	14
Brk R ohm		11.3	8.5	6.8	5.5	4.1
Brk L H		1.2	0.9	0.7	0.73	0.55
Brk I bw pick Hz		2	2	2	2	2
Brk I bw hold Hz		0.5	0.5	0.5	0.5	0.5
3-4 MACHINE						
Number of Poles	30	30	30	30	30	30
Rated Trq Nm	1750	1750	1750	1750	1750	1750
Rated Trq I A	79.2	79.2	79.2	79.2	79.2	79.2
Ld mH	4.2	4.2	4.2	4.2	4.2	4.2
Lq mH	4.2	4.2	4.2	4.2	4.2	4.2
R Ohm	0.3	0.3	0.3	0.3	0.3	0.3
T/A Slope %	0	0	0	0	0	0
T/A Offset A Kt Slope 1/kNm	0	0	0	0	0	0
Kt Slope 1/kNm Id Saturation A	0	0	0	0	0	0
Ig Saturation A	50	50	50	50	50	50
Ld Slope uH/A	23	23	23	23	23	23
	8.5	8.5	8.5	8.5	8.5	8.5
Lq Slope uH/A Lq0 mH	6.5 4.2	6.5 4.2	6.5 4.2	6.5 4.2	6.5 4.2	6.5 4.2
Lq0 MH Lq1 1/mA	4.Z 0	4.2	4.2	4.2	4.2	4.2
Lq2 1/mA^2	0	0	0	0	0	0
Ld0 mH	4.2	4.2	4.2	4.2	4.2	4.2
Rated Motor rpm	255	255	255	255	255	255
Mag err thr eDeg	20	20	20	20	20	20
LRT AC Level PU	0.09	0.09	0.09	0.09	0.09	0.09
LRT DC Level PU	0.15	0.15	0.15	0.15	0.15	0.15
LRT mot err eDeg	8	8	8	8	8	8
Fld Wkn Lvl %	100	100	100	100	100	100
Fld Wkn BW Hz	10	10	10	10	10	10
Parameters not in SVT						
Sheave Diametr (mm)	600					

Sheet 200 of 213

Motor Model	PM30T	PM30T	PM30T	PM30T
	Type1	Type1	Type2	Type2
Otis P/N	-Std AAH 1.2	-ANSI	-Std AAH 3,4	-ANSI
J_A20226	ABK 1,2,5,6	ABK 1,2,5,6	ABK 3,4,7,8	ABK 3,4,7,8
Brake P/N	J_A20237AAG	J_A20237AAK	J_A20237AAG	J_A20237AAK
3-1 CONTRACT				
Motor Type	731	732	733	734
3-2 ADJUSTMENT				
Track Error mm/s	150	150	150	150
No Enc VThrs PU	0.2	0.2	0.2	0.2
No enc flt t sec	0.4	0.4	0.4	0.4
3-3 BRAKE				
Brk Pick A	4.23	4.1	4.23	4.1
Brk Pick %	85	85	85	85
Brk Hold A	3.52	3.4	3.52	3.4
Brk OCT A	10	10	10	10
Brk R ohm	24.1	27	24.1	27
Brk L H	2.3	2.5	2.3	2.5
Brk I bw pick Hz	8	8	8	8
Brk I bw hold Hz	1	1	1	1
3-4 MACHINE				
Number of Poles	36	36	36	36
Rated Trq Nm	3724	3724	4655	4655
Rated Trq I A	131.9	131.9	160.0	160.0
Ld mH Lg mH	2.02	2.02 2.11	1.7 1.72	1.7 1.72
Lq mH R Ohm	0.15	0.15	0.13	0.13
T/A Slope %	0.10	0.10	0.10	0.10
T/A Offset A	0	0	0	0
Kt Slope 1/kNm	0	0	0	0
Id Saturation A	65	65	0	0
Iq Saturation A	86	86	80	80
Ld Slope uH/A	2.6	2.6	3	3
Ld Slope mH/A	0	0	0	0
Lq Slope uH/A	1.6	1.6	0.9	0.9
Lq Slope mH/A Lq0 mH	0 2.11	0 2.11	0	0
Lq0 mH Lq1 1/mA	0	0	0	0
Lq2 1/mA^2	0	0	0	0
Ld0 mH	2.02	2.02	1.7	1.7
Rated Motor rpm	176	176	176	176
Mag err thr eDeg	20	20	20	20
LRT AC Level PU	0.09	0.09	0.09	0.09
LRT DC Level PU	0.15	0.15	0.15	0.15
LRT mot err eDeg	8	8	8	8
Fld Wkn Lvl %	100	100	100	100
Fld Wkn BW Hz	10	10	10	10
Machine Parameters not in SVT				
Turns Per Coil (TPC)	46	46	38	38
Machine Inertia (kg-m ²)	84.2	84.2	88.7	88.7
Sheave Diametr (mm)	760	760	760	760

Motor Model	156MST	156MST	
	1800kg-4mps 480V	1800kg-4mps 480V	
Otis P/N	Shibayama test	JAA20220 AAL/AAP	
3-1 CONTRACT			
Motor Type	791	792	
3-3 BRAKE			
Brk Pick A	-	5.3	
Brk Pick %	-	85	
Brk Hold A	-	2.8	
Brk OCT A	-	8	
Brk R ohm	-	25.0	
Brk L H	-	4.0	
Brk I bw pick Hz	-	1.5	
Brk I bw hold Hz	-	0.5	
3-4 MACHINE			
Number of Poles	8	8	
Rated Trq Nm	1530	1333	
Rated Trq I A	102	66	
Ld mH	1.8	3.8	
Lq mH	1.8	3.8	
R Ohm	1.0	0.7	
Rated Mag I A	60	54	
Peak Mag I A	60	55	
Rtr Time Const s	0.55	0.55	
Max Flux time s	1	1	
Rated Motor rpm	250	250	
Parameters not in SVT			
Turns Per Coil (TPC)	-	-	
Machine Inertia (kg-m ²)	-	-	
Sheave Diametr (mm)	610	610	

Sheet 202 of 213

Motor Model	41T-514x2	41T-514x2	41T-526x2	41T-526x2
	2brakes	4brakes	2brakes	4brakes
	8mps	8mps	15mps	15mps
	3phase	3phase	6phase	6phase
3-1 CONTRACT				
Motor Type	801	802	803	804
3-2 ADJUSTMENT				
Track Error mm/s				
No Enc VThrs PU				
No enc flt t sec				
3-3 BRAKE				
Brk Pick A	7.4	7.4	7.4	7.4
Brk Pick %	85	85	85	85
Brk Hold A	3.0	3.0	3.0	3.0
Brk OCT A	10	10	10	10
Brk R ohm	14.4	28.8	14.4	28.8
Brk L H	0.2	0.2	0.2	0.2
Brk I bw pick Hz	1	1	1	1
Brk I bw hold Hz	0.2	0.2	0.2	0.2
3-4 MACHINE				
Number of Poles	48	48	48	48
Rated Trg Nm	16850	16850	16850	16850
Rated Trg I A	413	413	800	800
Ld mH	1.2	1.2	0.8	0.8
Lq mH	1.4	1.4	0.78	0.78
R Ohm	0.05	0.05	0.03	0.03
T/A Slope %	0	0	0	0
T/A Offset A	0	0	0	0
Kt Slope 1/kNm	0	0	0	0
Id Saturation A	0	0	50	50
Iq Saturation A	0	0	200	200
Ld Slope uH/A	0	0	0.8	0.8
Lq Slope uH/A	0	0	0.1	0.1
Lq0 mH	1.4	1.4	0.82	0.82
Lq1 1/mA	0	0	0	0
Lq2 1/mA^2	0	0	0	0
Ld0 mH	1.2	1.2	0.6	0.6
Rated Motor rpm	139	139	260	260
Mag err thr eDeg	20	20	25	25
LRT AC Level PU	0.03	0.03	0.03	0.03
LRT DC Level PU	0.5	0.5	0.5	0.5
LRT mot err eDeg	8	8	8	8
Fld Wkn Lvl %	100	100	100	100
Fld Wkn BW Hz	2.5	2.5	2.5	2.5
Machine Parameters				
Turns Per Coil (TPC)				
Machine Inertia (kg-m ²)				
Sheave Diametr (mm)	1110	1110	1110	1110

								Chice	1 203 01 2	_
Motor Model	Gen2 Green Power (GGP) Comfort 630kg 1.0m/s	Gen2 Green Power (GGP) Comfort 1000kg 1.0m/s	Gen2 Green Power (GGP) Comfort 1000kg 1.6/1.75 m/s		2.6T- 54X1	2.6T- 54X2	2.6T- 57X1	2.6T- 57X2	2.6T- 58x1	3.2T- 54X3
Otis P/N	T_A 20220 S252 S552 S253 S572	T_A 20220 V251 V255 V551 V571 V574	TAA202 20 V256	AAA202 20AW 71 & 81	T_A 20220 AB7 AB5 AB505 AB15 AB515 AB25 AB25	T_A 20220 AB2 AB502 AB12 AB512 AB22 AB522	T_A 20220 AB6 AB1 AB501 AB11 AB511 AB21 AB521	T_A 20220 AB3 AB503 AB13 AB513 AB23 AB523	T_A 20220 AB562	T_A 20220 AB4 AB504 AB14 AB514 AB24 AB524
3-1 CONTRACT										
Motor Type	201	207	210	302	211	212	213	214	215	303
3-4 MACHINE										
Number of Poles	10	10	10	10	14	14	14	14	14	14
Rated Trq Nm	83.3	126.0	126.0	210	160	200	160	200	200	255
Rated Trq I A	7.8	13.60	22.5	19.5	12.2	13.4	19.4	25	28.8	17.1
Ld mH	87	62.92	22	52.00	45	41	14	13	8.2	32
Lq mH	110	78.22	28	67.00	70	48.5	17	17	11.6	41
R Ohm	5	1.25	1.4	3.00	3	3	2	2	0.4	3
T/A Slope % T/A Offset A	35 2.57	27.91 2.90	44 9	41.3	22.9 3.7	76.5 12	43.8 13.5	47 15	22.5 9.9	33 7.5
Kt Slope 1/kNm	0	0.00	9	0.99	0	0	0	0	9.9 0	7.5 0
Id Saturation A	4	3.0	0.0	6.00	2.2	5	9	8	7.5	9
Ig Saturation A	3	1.50	6.3	0.00	2.2	5	9	5	6.0	5
Ld Slope mH/A	3.09	0.46	0.00	2.43	1.80	0.94	0.27	0.21	0.09	0.74
Lq Slope mH/A	4.8	2.66	0.55	1.36	1.95	0.87	0.21	0.19	0.11	0.6
Lq0 mH	118.54	111.9	36	90.0	70	48.5	17	17	11.6	41
Lq1 1/mA	43.25	56	0	36	0	0	0	0	0	0
Lq2 1/mA^2	0	900	0	300	0	0	0	0	0	0
LdO mH	58.0	56.14	22	40.00	45	41	5	5	8.2	32
Rated Mag I A	-	-	-	-	-	-	-	-	-	-
Peak Mag I A	-	-	-	-	-	-	-	-	-	-
Rtr Time Const s	-	-	-	-	-	-	-	-	-	-
Rated Motor rpm	477	477	835	371	371	378	649	660	818	378
Mag err thr eDeg	20	20.00	20.00	20	20	20	20	20	20	20
Fld Wkn Lvl % Fld Wkn BW Hz	100 10	100 10.00	100 10.00	100 10.00	100 10.00	100 10.00	100 10.00	100 10.00	100 10.00	100
Machine Parameters not in SVT	10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Turns Per Coil (TPC)										
Machine Inertia (kg-m ²)										
Sheave Diametr (mm)										

Sheet 204 of 213

Motor Model	2.6T at 3 m/s 2.6T-5198F	5.2T5195D
Otis P/N	TAA20220	TAA20220AT41
0	AB566_3m/s	AT43
3-1 CONTRACT		
Motor Type	216	511
3-4 MACHINE		
Number of Poles	14	14
Rated Trq Nm	200	356
Rated Trq I A	34.7	59.7
Ld mH	5.2	4.4
Lq mH	6.8	5.8
R Ohm	0.2	0.1
T/A Slope 🖇	24.2	26.6
T/A Offset A	13.3	18.5
Kt Slope 1/kNm	0	0
Id Saturation A	14.5	7.3
Iq Saturation A	14	18
Ld Slope mH/A	0.04	0.03
Lq Slope mH/A	0.04	0.03
Lq0 mH	6.8	5.8
Lq1 1/mA	0	0
Lq2 1/mA^2	0	0
Ld0 mH	5.2	4.4
Rated Motor rpm	982	945
Mag err thr eDeg		
Fld Wkn Lvl 🖇		
Fld Wkn BW Hz		

Document: 55661

Sheet 205 of 213

Motor Model	4.1T-	4.1T-	5.0T-	5.0T-	5.2T-	5.2T –	5.2T –
	53X1	56X1	53X2	56X2	54X1	58x1	58x2
	A*A	A*A	A*A	A*A 20220	A*A 20220	A*A 20220	A*A
Otis P/N	20220	20220	20220	BD31	20220 BF12	20220 BF1	20220
	BD1	BD11	BD21	BD32	DITZ	BF11	BF21
	BE1	BE11	BE21	BE31		BG1	BG11
3-1 CONTRACT							
Motor Type	403	404	501	502	505	503	504
3-4 MACHINE							
Number of Poles	14	14	14	14	14	14	14
Rated Trq Nm	300	300	420	420	300	300	365
Rated Trq I A	16	28	21.7	36.2	34	37	50
Ld mH	52	20	44	15.5	42	9.5	6.5
Lq mH	60	29	73	20	59	12.3	8.75
R Ohm	0.8	0.8	0.7	1.6	0.35	1	0.35
T/A Slope %	37.4	40	37	39	39.7	40.6	34
T/A Offset A	4.8	9.5	7.39	11.6	5.78	13.4	19
Kt Slope 1/kNm	0	0	0	0	0	0	0
Id Saturation A	3	7	3.4	5	5	10	15
Iq Saturation A	16	5	4	5.3	5	11.1	5
Ld Slope mH/A	0.9	0.2	0.7	0.17	0.8	0.1	0.04
Lq Slope mH/A	0.5	0.33	1	0.18	1.15	0.12	0.07
Lq0 mH	75	32	73.8	22	65	11	11
Lq1 1/mA	0	0	0	0	1.59	0	0
Lq2 1/mA^2	0	0	0	0	0.02	0	0
LdO mH	60	10	35.6	10	45	6.5	4.8
Rated Mag I A	-	-	-	-	-	-	-
Peak Mag I A	-	-	-	-	-	-	-
Rtr Time Const s	-	-	-	-	-	-	-
Rated Motor rpm	330	576	330	576	405	822	822
Mag err thr eDeg	20	20	20	20	20	20	20
Fld Wkn Lvl %	100	100	100	100	100	100	100
Fld Wkn BW Hz	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Machine Parameters							
not in SVT							
Turns Per Coil (TPC)							
Machine Inertia (kg-m ²)							
Sheave Diametr (mm)							

Sheet 206 of 213

	GGP	GGP	GGP	GGP		GGP	GGP
					GGP		
	4.1T532D	4.1T558E	4.1T581A	5.0T532A	5.0T552A	5.0T557B	5.2T581C
MACHRAT	4.1T533D	3.2T558	4.1T582A	5.0T533A		5.0T558B	5.2T582C
	1600kg	1600kg	1600kg	2268kg	2000kg	2268kg	2268kg
	1.02m/s	1.78m/s	2.54m/s	1.02m/s	1.60m/s	1.78m/s	2.54m/s
	TA*20220	TA*20220	TA*20220 AT11	TA*20220	TA*20220	TA*20220 AT14	TA*20220
Otis P/N	AR11	AR12	AITT	AT12	AT13	AT14 AT15	AT32
3-1 CONTRACT							
Motor Type	405	406	407	507	508	509	510
3-4 MACHINE							
3-4 WIACHINE Number of Poles	14	14	14	14	14	14	14
Rated Trg Nm	300	300	300	435	375	420	410
Rated Trg I A	18.2	32	44	26.3	35.5	43.6	62
Ld mH	39.4	16.5	7.5	46.9	18.3	14.7	5.3
Lq mH	52.0	22.8	10.2	64.8	27.3	19.7	7.4
R Ohm	1.57	0.7	0.18	1.0	0.42	0.31	0.11
T/A Slope %	38.1	32.3	32.9	42.3	35	25.7	27.4
T/A Offset A	6.2	8.9	15.1	7.1	9	9.2	17.1
Kt Slope 1/kNm	0	0	0	0	0	0	0
Id Saturation A	6.1	7	7.3	11.5	3	3	7.5
Iq Saturation A	4.4	7	17.2	6.2	3.6	12.3	5.0
Ld Slope mH/A	0.67	0.17	0.06	0.61	0.32	0.20	0.04
Lq Slope mH/A	0.8	0.23	0.09	1.00	0.27	0.22	0.03
Lq0 mH	52.0	22.8	10.2	64.8	27.3	19.7	7.4
Lq1 1/mA	0	0	0	0	0	0	0
Lq2 1/mA^2	0	0	0	0	0	0	0
LdO mH	39.4	16.5	7.5	46.9	18.3	14.7	5.3
Rated Mag I A	-	-	-	-	-	-	-
Peak Mag I A	-	-	-	-	-	-	-
Rtr Time Const s	-	-	-	-	-	-	-
Rated Motor rpm	324	576	809	330	518	576	822
Mag err thr eDeg	20	20	20	20	20	20	20
Fld Wkn Lvl %	100	100	100	100	100	100	100
Fld Wkn BW Hz	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Machine Parameters not in SVT							
Turns Per Coil (TPC)							
Machine Inertia (kg-m ²)							
Sheave Diametr (mm)							

Sheet	207	of	213
-------	-----	----	-----

	DOMOON	DOMOON	DOMOON	DOMOON	DOMOON	DOMOON	
Motor Model	вомсоw 630Kg	вомсоw 630Kg	вомсоw 800Kg	вомсоw 800Kg	вомсоw 1000Kg	вомсоw 1000Kg	
	AJ1,	AJ2,	AJ4,	AJ5,	AJ7,	AJ8,	
	T1,	AJ3,	T4,	AJ6,	Τ7,	AJ9,	
Otis P/N	T10	T2,	T13	T5,	T16	Т8,	
DAA20220-		ТЗ,		Т6,		Т9,	
		T11, T12		T14, T15		T17, T18	
2.4 CONTRACT		112		115		110	
3-1 CONTRACT	321	322	323	004	005	000	
Motor Type	321	322	323	324	325	326	
3-4 MACHINE							
Number of Poles	20	20	20	20	20	20	
Rated Trq Nm	460	460	550	550	665	665	
Rated Trq I A	8.4	15.6	9.7	18	11.3	21	
Ld mH	228.1	75	172.1	56.2	130.8	44	
Lq mH	203.8	67	156.2	51.0	118.9	40	
R Ohm	9.39	3.14	6.84	2.34	4.88	1.66	
T/A Slope %	27.3	15	20	11	27.3	15	
T/A Offset A	2.0	2	2	4	2	4	
Kt Slope 1/kNm	0	0	0	0	0	0	
Id Saturation A	6.7	10	10	15	10	15	
Iq Saturation A	2.1	7	4.5	15	3	10	
Ld Slope mH/A	5.5	1.86	3.96	1.34	3.55	0.78	
Lq Slope mH/A	2.3	0.57	0.79	0.2	0.91	0.33	
Lq0 mH	203.8	67	96	51	118.9	40	
Lq1 1/mA	0	0	0	0	0	0	
Lq2 1/mA^2	0	0	0	0	0	0	
LdO mH	229	75	172	56.2	85	30	
Rated Mag I A	-	-	-	-	-	-	
Peak Mag I A	-	-	-	-	-	-	
Rtr Time Const s	-	-	-	-	-	-	
Rated Motor rpm	96	168	96	168	96	168	
Mag err thr eDeg	20	20	20	20	20	20	
Fld Wkn Lvl %	100	100	100	100	100	100	
Fld Wkn BW Hz	10	10	10	10	10	10	
Machine Parameters							
not in SVT							
Turns Per Coil (TPC)							
Machine Inertia (kg-m ²)							
Sheave Diametr (mm)							
	1				1		1 1

Document: 55661

Sheet 208 of 213

MACHRAT	3.0T5103A,	3.0T5107A,
	3.0T5102A	3.0T5104A
	BOMCOW	BOMCOW
Motor Model	320Kg	630Kg 1.0m/s.
	1.0m/s, 0.63m/s	0.63m/s
Otis P/N DAA20220-	CH1, CH2	CH3, CH4
3-1 CONTRACT		
Motor Type	310	311
3-4 MACHINE		
Number of Poles	20	20
Rated Trq Nm	665	665
Rated Trq I A	6.1	9.2
Ld mH	616	209
Lq mH	616	209
R Ohm	24.5	8.3
T/A Slope %	0	0
T/A Offset A	0	0
Kt Slope 1/kNm	0	0
Id Saturation A	0	0
Iq Saturation A	0	0
Ld Slope mH/A	0	0
Lq Slope mH/A	0	0
Lq0 mH	616	209
Lq1 1/mA	0	0
Lq2 1/mA^2	0	0
Ld0 mH	616	209
Rated Motor rpm	33	66
Mag err thr eDeg	40	20
LRT DC Level PU	0.1	0.1
LRT mot err eDeg	10	10
Fld Wkn Lvl %	100	100
Fld Wkn BW Hz	1.5	2

9.1 Motor parameter for SkyMotion 160 Machine

This machine is required for setting the motor type to 902, and then you can manually input for each brake and motor parameters.

For the PM30T machine, you can use the "Motor type = 731-734" as the pre-defined parameter above. The brake parameters are different from PM30T and SM160 machine.

Motor Model	16T-5118A Type1	16T-5118B Type2	
Max Duty	1800kg	2250kg	
Max speed	7mps	7mps	
Max Rise			
Otis P/N	J_A20226AAH1,2	J_A20226AAH3,4	Motor assembly is
Motor assembly	J_A20226ABK1,2,5,6	J_A20226ABK3,4,7,8	same as PM30T.
3-4 MACHINE			
Low Volt Op 0/1	0	0	
Number of Poles	36	36	
Rated Trq Nm	3724	4655	
Rated Trq I A	131.9	160	
Ld mH	2.02	1.7	
Lq mH	2.11	1.72	
R Ohm	0.15	0.13	
T/A Slope %	0	0	
T/A Offset A	0	0	
Kt Slope 1/kNm	0	0	
Id Saturation A	65	0	
Iq Saturation A	86	80	
Ld Slope uH/A	2.6	3	For OVF428G,460G
Ld Slope mH/A	0	0	For 160ACR
Lq Slope uH/A	1.6	0.9	For OVF428G,460G
Lq Slope mH/A	0	0	For 160ACR
Lq0 mH	2.11	1.72	
Lq1 1/mA	0	0	
Lq2 1/mA^2	0	0	
LdO mH	2.02	1.7	
Rated Motor rpm	176	176	
Mag err thr eDeg	20	20	
LRT AC Level PU	0.09	0.09	
LRT DC Level PU	0.15	0.15	
LRT mot err eDeg	8	8	
Fld Wkn Lvl %	100	100	
Fld Wkn BW Hz	10	10	
Inv Hrmnc On 0/1	0	0	
Machine Parameters not in	SVT		
Sheave Diametr (mm)	760	760	

Drive	428G	428G	428G
Number of brake	2 Brakes	3 Brakes	4 Brakes
Otis P/N			
3-3 BRAKE			
BCM present 0/1	1	1	1
Brk Sw Type 0-6	1	5	5
Brk Pick Time ms	5000	5000	5000
Brk Setl Time ms	100	100	100
Lft Brk Delay ms	100	100	100
Brk Lftd Dely ms	30	30	30
Brk ramp up t ms	1000	1000	1000
Brk ramp dn t ms	200	200	200
Brk hold Dely ms	500	500	500
Brk Pick A	7.4	3.7	7.4
Brk Pick %	85	85	85
Brk Hold A	3.0	1.5	3.0
Brk Drop 🖇	20	20	20
Brk Bus OVT 🖇	130	130	130
Brk OCT A	10	6	10
Brk Bus UVT 🖇	70	70	70
Brk Nom DC V	310	310	310
Brk dcv fscale V	1050	1050	1050
Brk Crr fsclae A	15.7	15.7	15.7
Brk R ohm	11.65	50	23.3
Brk L H	2	4	1
Brk I bw pick Hz	1	1	1
Brk I bw hold Hz	0.2	0.2	0.2

9.1.1 Brake parameter for SkyMotion 160 Machine

9.2 Motor parameter for SkyMotion 260 Machine This machine is required for setting the motor type to 902, and then you can manually input for each brake and motor parameters.

Drive	428G	428G	460G	460G
Motor Model	25T-5112A	25T-5117A	25T-5117B	25T-5121B
Max Duty	2700kg	2000kg	4000kg	3600kg
Max speed	6mps	8mps	8mps	10mps
Max Rise	300m	300m	300m	300m
Otis P/N				
3-4 MACHINE				
Low Volt Op 0/1	0	0	0	0
Number of Poles	40	40	40	40
Rated Trq Nm	7500	5600	10500	10500
Rated Trq I A	168	164	307	382
Ld mH	3	1.6	1	0.8
Lq mH	3	2	1.4	1
R Ohm	0.2	0.12	0.07	0.05
T/A Slope %	0	0	0	0
T/A Offset A	0	0	0	0
Kt Slope 1/kNm	0	0	0	0
Id Saturation A	0	0	0	0
Iq Saturation A	0	0	0	0
Ld Slope uH/A	0	0	0	0
Lq Slope uH/A	0	0	0	0
Lq0 mH	3	2	1.4	1
Lq1 1/mA	0	0	0	0
Lq2 1/mA^2	0	0	0	0
Ld0 mH	3	1.6	1	0.8
Rated Motor rpm	124	165	165	206
Mag err thr eDeg	25	25	25	25
LRT AC Level PU	0.09	0.09	0.09	0.09
LRT DC Level PU	0.15	0.15	0.15	0.15
LRT mot err eDeg	8	8	8	8
Fld Wkn Lvl %	100	100	100	100
Fld Wkn BW Hz	2.5	2.5	2.5	2.5
Inv Hrmnc On 0/1	0	0	0	0
Machine Parameters not in SVT				
Sheave Diametr (mm)	925	925	925	925

Drive	428G	428G	460G
Number of brake	3 Brakes	4 Brakes	4 Brakes
Otis P/N		. Drance	1 Dianoo
3-3 BRAKE			
BCM present 0/1	1	1	1
Brk Sw Type 0-6	5	5	5
Brk Pick Time ms	5000	5000	5000
Brk Setl Time ms	100	100	100
Lft Brk Delay ms	100	100	100
Brk Lftd Dely ms	30	30	30
Brk ramp up t ms	1000	1000	1000
Brk ramp dn t ms	200	200	200
Brk hold Dely ms	500	500	500
Brk Pick A	3.7	7.4	7.4
Brk Pick %	85	85	85
Brk Hold A	1.5	3.0	3.0
Brk Drop %	20	20	20
Brk Bus OVT 🖇	130	130	150
Brk OCT A	6	10	10
Brk Bus UVT 🖇	70	70	70
Brk Nom DC V	310	310	230
Brk dcv fscale V	1050	1050	1050
Brk Crr fsclae A	15.7	15.7	15.7
Brk R ohm	70	23.3	23.3
Brk L H	4	1	1
Brk I bw pick Hz	1	1	1
Brk I bw hold Hz	0.2	0.2	0.2

9.2.1 Brake parameter for SkyMotion 260 Machine

10 Inertia Calculations

10.1 System Inertia Formula

For larger systems (usually gearless systems, or systems with compensation ropes), the following formula should be used:

$$\begin{split} J &= J_1 + J_2 + J_3 \\ J_1 &= \left(\frac{d_{shv}^2}{4r^2g_r^2}\right) \left(M_{car} + \frac{M_{duty}}{2} + M_{cwt} + M_{comp}\right) + J_{machine} \\ J_2 &= \left(\frac{d_{shv}^2}{4rg_r^2}\right) M_{rope} \\ J_3 &= \left(\frac{d_{shv}^2}{r^2g_r^2d_{comp}^2}\right) J_{comp} \end{split}$$

where:

dshv	diameter of drive sheave (m)
r	roping ratio (1= 1:1, 2= 2:1, etc.)
g r	gear ratio of gearbox (if any) $(1 = 1:1, 17 = 17:1 \text{ etc.})$
M	mass of empty car (kg)

M_{car} mass of empty car (kg) M_{cwt} mass of counterweight (kg)

J_{machine} total rotating inertia of all sheaves, including rotor inertia and drive sheave inertia, excluding Comp Sheave inertia, (kg-m2)

Mrope mass of ropes (kg)

M_{comp} mass of compensation ropes (kg)

J_{comp} inertia of Compensation Rope Sheave (kg-m2)

d_{comp} diameter of Compensation Rope Sheave (m)

10.2 System Inertia Approximation

For smaller systems (usually geared systems, or systems without compensating ropes), the following approximation for inertia may be satisfactory:

$$J = \left(\frac{d_{shv}^2}{4r^2g_r^2}\right) \left(M_{car} + \frac{M_{duty}}{2} + M_{cwt}\right) + J_{machine}$$

This approximation is derived by assuming $J_{\text{comp}} = M_{\text{comp}} = M_{\text{rope}} = 0$.