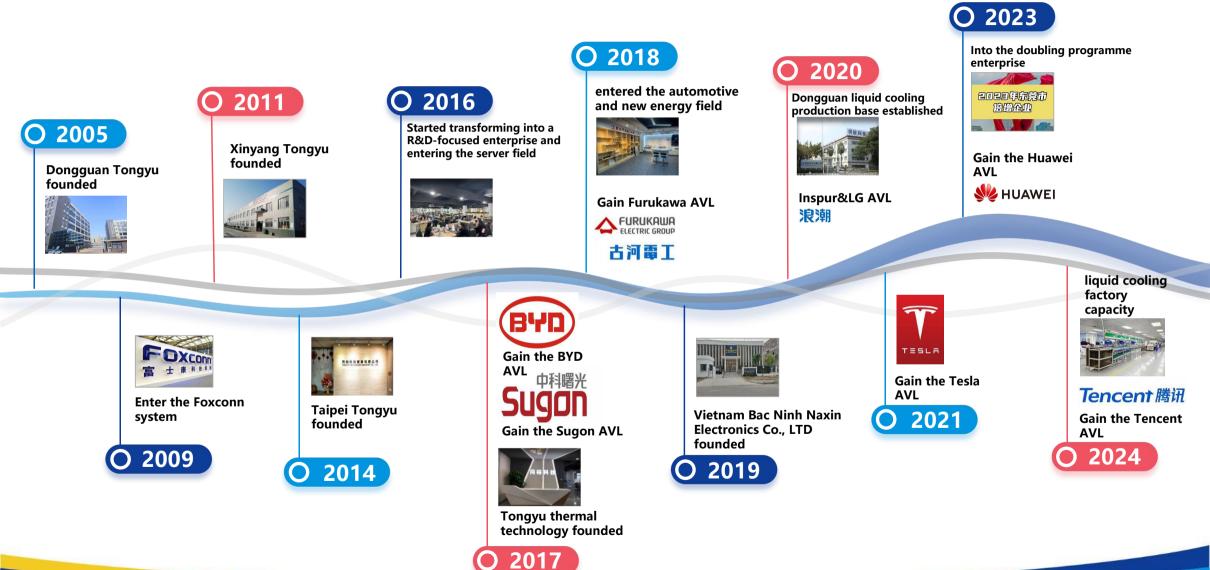


TONGYU TECHNOLOGY

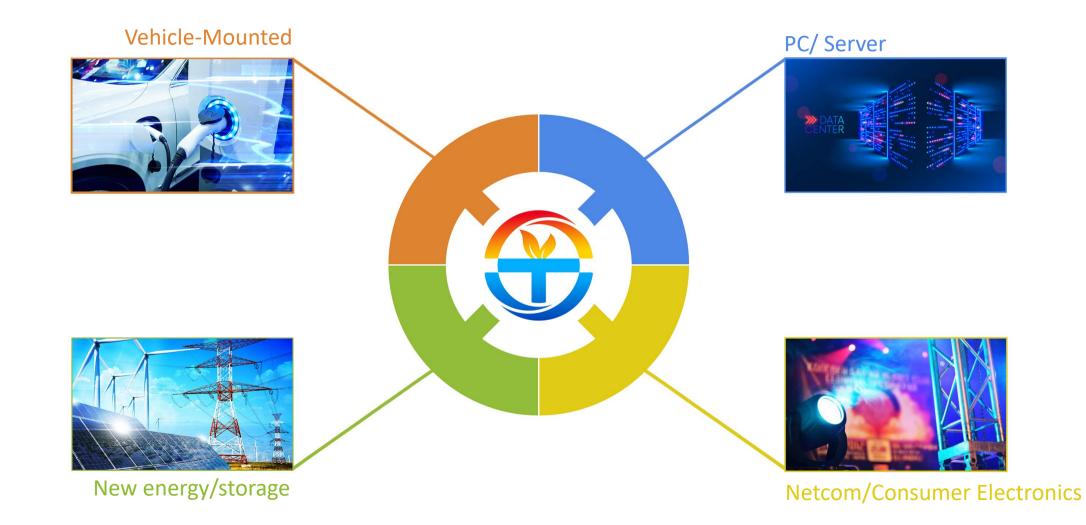
GLOBAL THERMAL SOLUTIONS PROVIDER & SUPPLIER

Contents

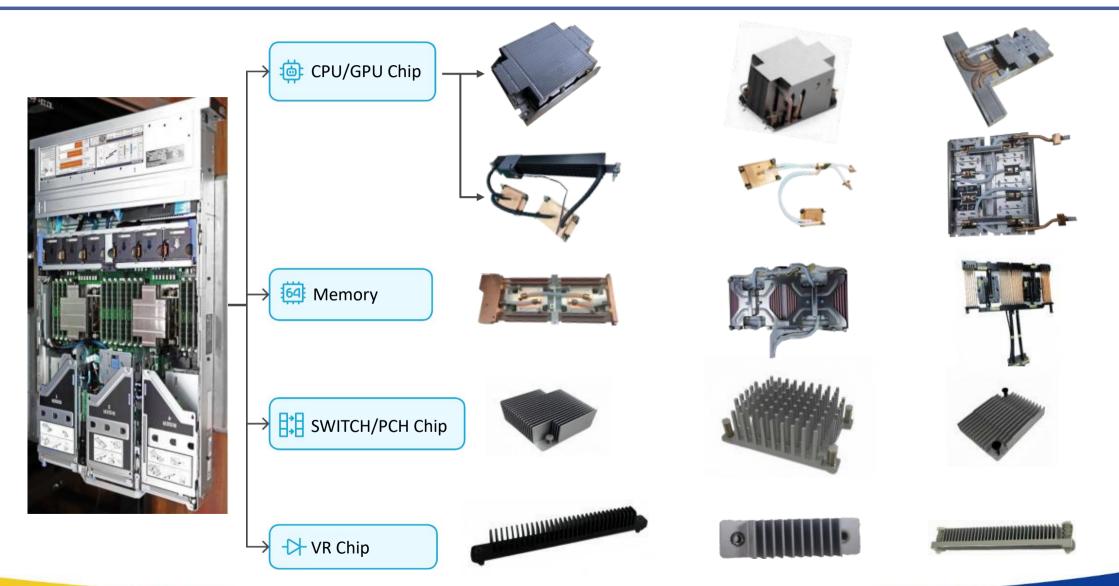
Company Profile


Tongyu Electrinics co. Ltd (Headquarter) Xinyang Tongyu Electronics Co., Ltd (China) Vietnam Bac Ninh Naxin Electronics Co. LTD

Jinan Office


Taibei Tongyu industrial Ltd (Taiwan) Naxin Electronics Technology Co.,Ltd (Hongkong) Tongyu Thermal Technology Co., Ltd (China)

Milestone



Server

Sales Proportion

23% 新能源 New energy

Category	Monthly production	Shipments/month	Moving rate
Extrusion	2000K	1500K	75%
Module Soldering	800K	400K	70%
Liquid Cooling	200K	150K	40%

Factory Show

Factory Show

Dongkeng | Tongyu Headquarter (36000 Square meter)

Vietnam | Tongyu Overseas Factory (7500 Square meter)

Dongkeng | Tongyu Liquid Cooling Factory (12000 Square meter)

SSL | Tongyu Thermal Technology

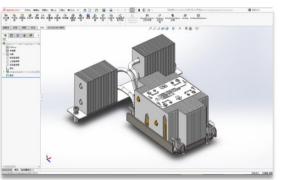
Xinyang | Tongyu Central China Factory (20000 Square meter)

Taiwan | Tongyu Industry

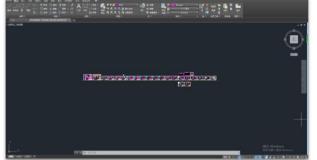
Tongyu Employee

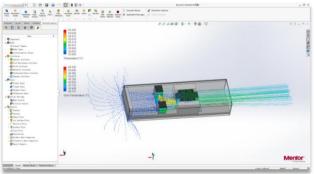
Office

Production line


Laboratory

Factory	Total Employees	Number of R&D Staff
Tongyu Headquarter	760	54
Tongyu Liquid Cooling Factory	164	22
Xinyang Factory	200	5
Vietnam Factory	100	4
Taiwan Office	15	6
SSL Office	12	5
Total	1251	96


R&D Software



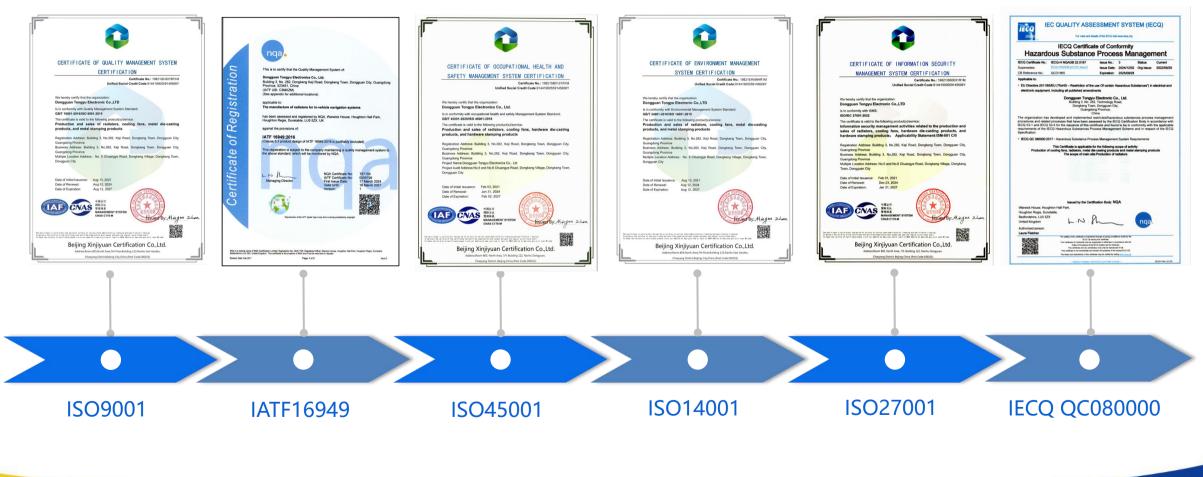
Quality System

Company Core Philosophy

Quality is the lifeline of an enterprise. Without quality, delivery is a disaster and reflects a lack of respect and responsibility to the customer. As a manufacturing company, in our business operations,

Quality First, Delivery Second, Cost Third is the core philosophy that our company has consistently upheld.

Quality First


Delivery Second

Cost Third

Certificates

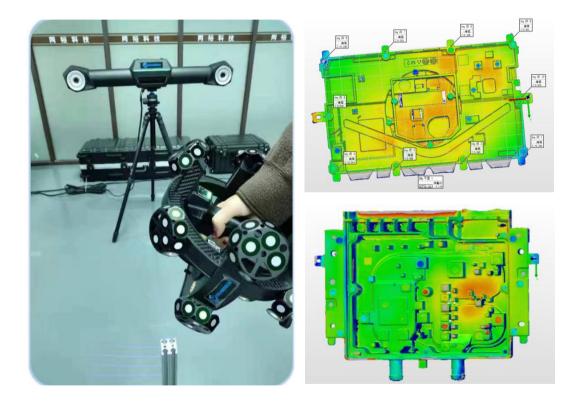
Honors

浙江师范大学工学院 东莞市同裕电子有限公司 5G应用散热器 联合实验室

OCTC Member

Excellent Supplier Trophies

Over 80 patents



Quality Measurement Laboratory (Precision Measurement)

Instrument Name: Coordinate Measuring Machine (CMM)

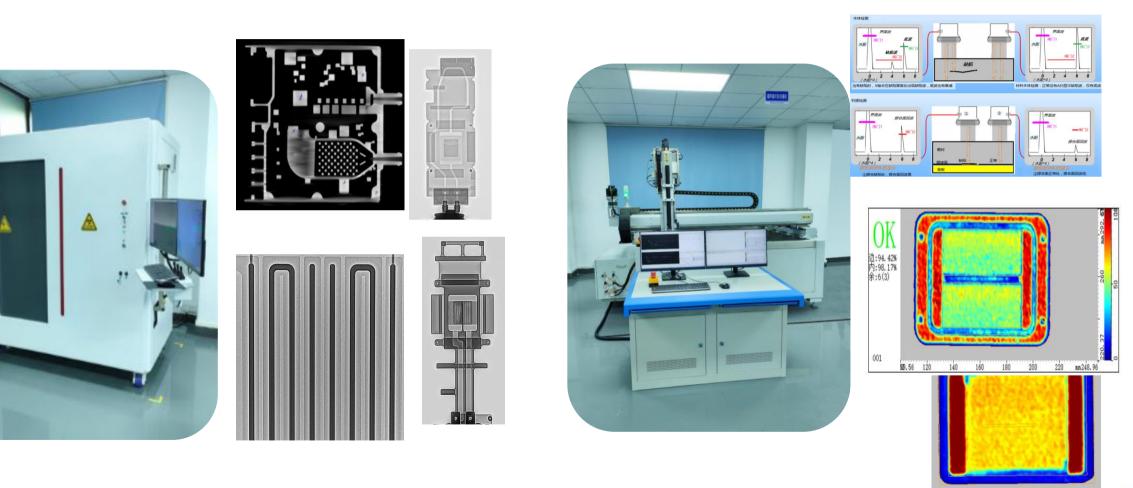
Instrument Name: Blue Light Tracking Scanner

Parameters:

Accuracy:0.025mm; Tracking Range:10.4m³,18m³ Scanning Rate:2,200,000 measurements/second Scannable Object Size Range:100-8000mm

Model:CROMA8156 Measuring Range:X800mm,Y1500mm,Z600mm Accuracy:2.5±L/300 um

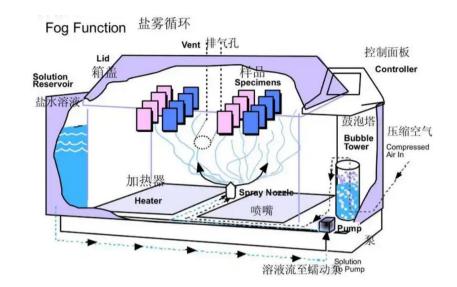
Model:Daisy8106 Measuring Range:800mm,Y1000mm,Z600mm Accuracy2.5±L/300 um



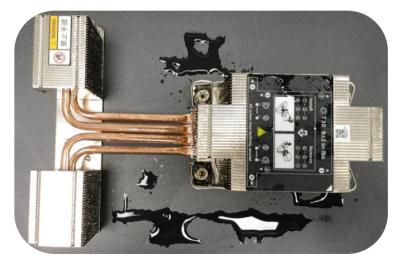
Instrument Name: Ultrasonic (C-Scan) Scanner

TONGYU

ELECTRONICS


Quality Measurement Laboratory (Environmental Testing)

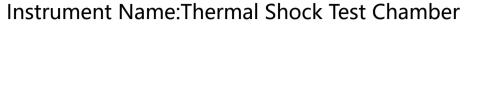
Instrument Name: Composite Salt Spray Test Chamber Parameter:


- Model: KM-90L-AF
- Dimension: 1410×880×1280mm
- Volume: 90L

Instrument Name: Programmable Salt Spray Test Chamber Parameter:

- Model: KD-90
- Dimension: 1410×880×1280mm
- Volume: 90L

Quality Measurement Laboratory (Environmental Testing)

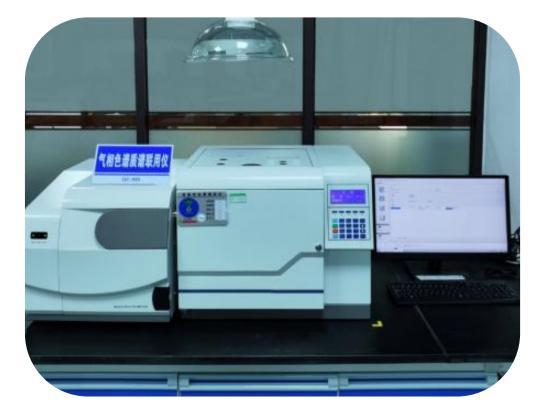


Instrument Name:Programmable Constant Temperature and Humidity Chamber

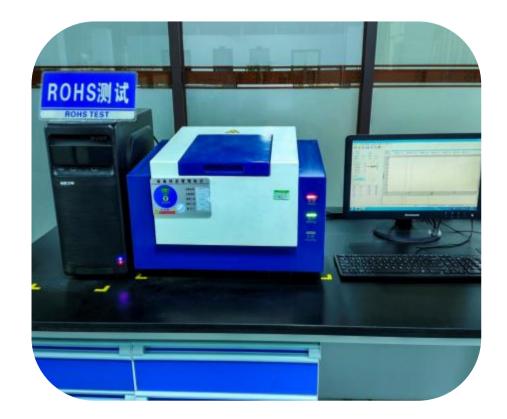
帞温帞湿测试箱 恒温恒湿测试 -

Model: TH-225DH Temperature Range: -50°C-150°C ± 2°C Humidity Range:5%-98%±2% Volume:225L

Model: FEMI880 Temperature Range:-50°C-150°C±2°C Humidity Range:20%-98%±2% Volume:225L



Model: KM-80L-CJ-40、Volume:80L、 Humidity Range:-55°C—150°C 、 Slope: \leq 5Min 、 Control Stability: ±0.2°C


Quality Measurement Laboratory (Environmental Testing)

Instrument Name: Gas Chromatograph-Mass Spectrometer (GC-MS)

Instrument Name:X-Ray Fluorescence Spectrometer (XRF)

Quality Measurement Laboratory (Packaging and Transportation Testing)

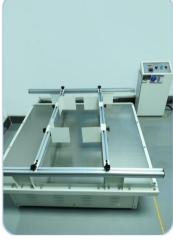

Tri-Axial Vibration Tester

Vickers Hardness Tester

Impact/Collision Testing Machine

Shore A/D Hardness Tester

Drop Test Machine


Shore A/D Hardness Tester

Ball Drop Impact Tester

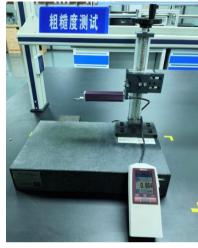
Rigidity Tester

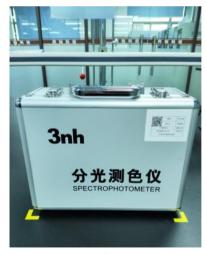
Transportation Vibration Simulator

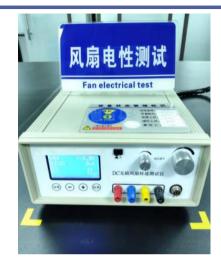

Thermal Conductivity Tester

Quality Measurement Laboratory (Physical Performance Testing)

Spring Tester


Tape Friction Tester


Tensile Testing Machine


Pencil Scratch Resistance Tester

Roughness Tester

Spectrophotometer

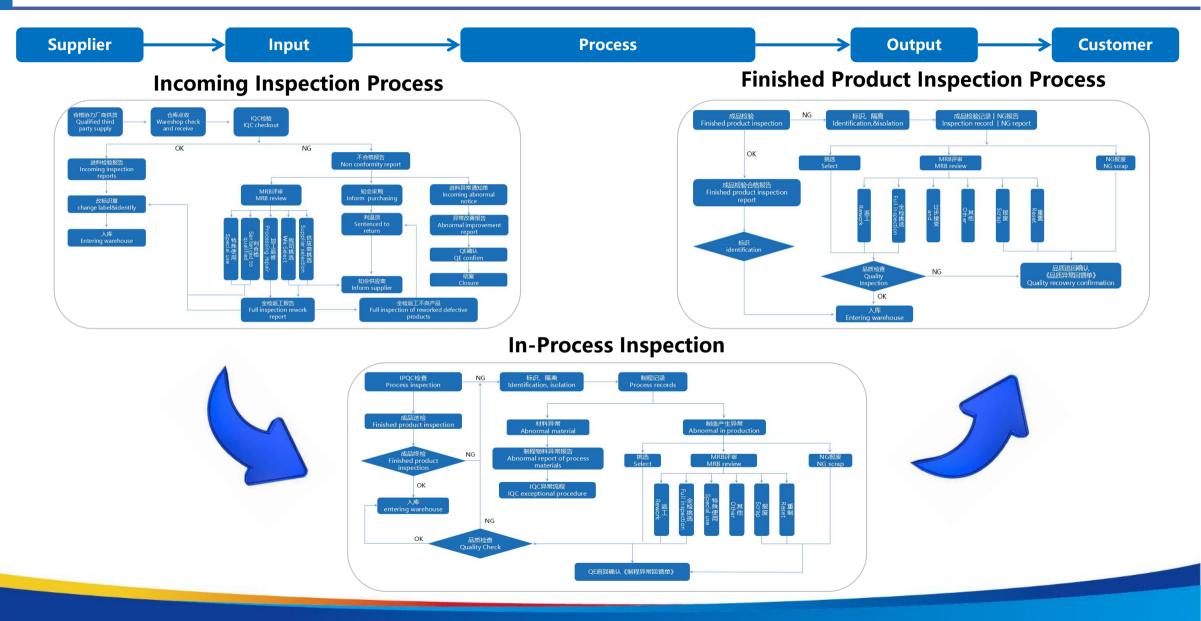
Fan Speed Tester

Bursting Strength Tester

Automation Equipment Application

Automatic screw Machine

Automatic Laser Welding Machine

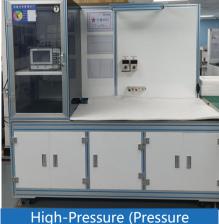


Automatic Dispensing Machine

Product Outgoing Quality Assurance (Air Cooling)

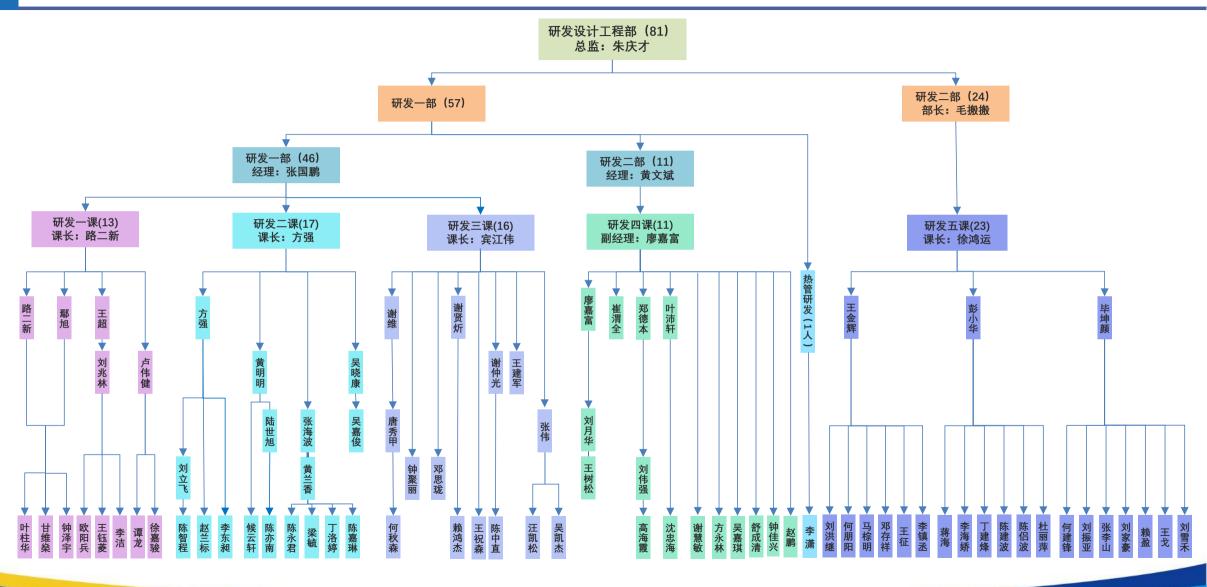
Thermal Resistance Testing Machine

Product Outgoing Quality Assurance (Liquid Cooling)

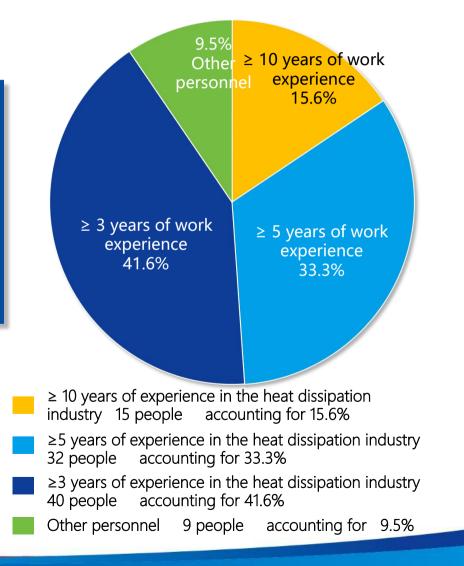

Vacuum Helium Leak Tester

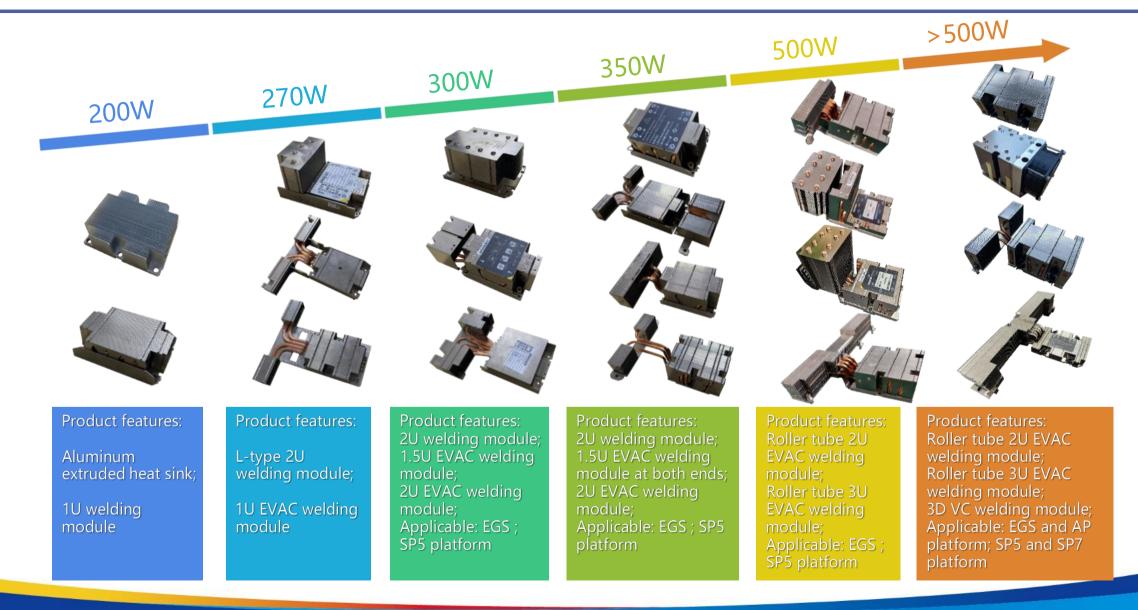
Flow Channel Cleaning Machine

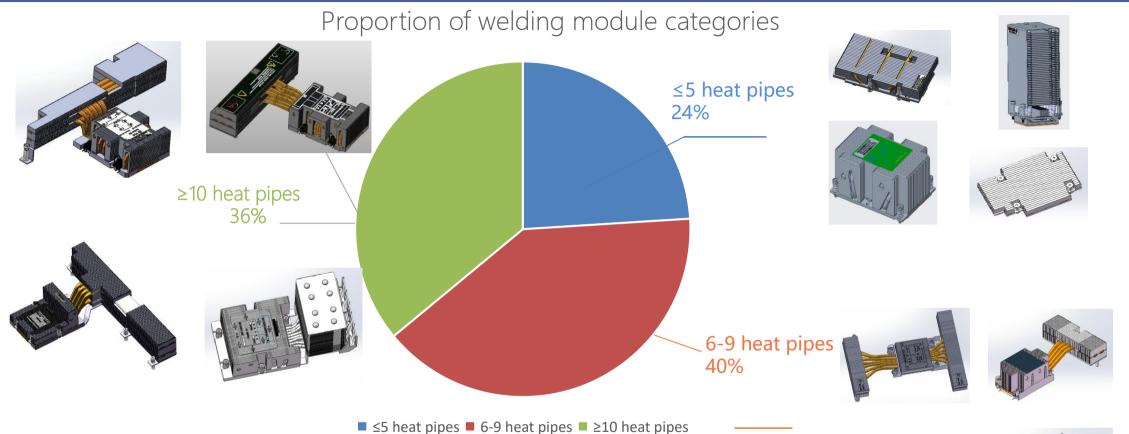
High-Pressure (Pressure Holding) Air Tightness Tester


Automatic Thread Inspection Machine

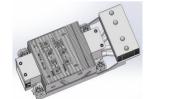
About R&D Team

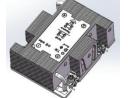

R&D Department Headquarters Architecture Diagram


Headquarters R&D---86 people
Taipei R&D---6 people
Vietnam R&D---4 people
Total number of R&D---96 people
Bachelor's degree or above: 35 people, accounting for 36.5%
College education: 46 people, accounting for 47.9%
Other personnel: 15 people, accounting for 15.6%


R&D Cases

Technology Study/Product case Air-Cooled




Proportion of Air-Cooled Heat Sink Categories

In the company's air-cooled welding module products, complex modules with 6 or more heat pipes account for the vast majority

Aluminum Extrusion

1. The front mold, also known as the deflector, mainly plays a guiding role. The deflector first relieves the extrusion pressure of the aluminum material, allowing it to pass through the guide hole and re converge in the rear cavity. The converged

2. The middle mold mainly plays a forming role, finely extruding the aluminum material guided by the front mold. Due to the high processing accuracy of the middle mold, it is an important link to ensure the dimensional accuracy of the extruded shape. Therefore, the processing accuracy of the middle mold will directly affect the quality of the product.

赁	宽度 Width	高度 Height	齿距Distance	齿厚 Fin thickness	平面度Flatness	底板厚度Base thickness	模具寿命Tooling life
	10-20	12-16	1.4-1.6	齿尖(Tip) 0.5齿根(Root) 0.7	0.05-0.08	2	约(about)2000m
	20-35	15-25	1.7-2.0	齿尖(Tip) 0.5齿根(Root) 0.8	0.08-0.1	2	约(about)2000m
	35-50	20-30	1.8-2.3	齿尖(Tip) 0.6齿根(Root) 0.9	0.1-0.12	2.3	约(about)2000m
	45-60	25-35	2.0-2.6	齿尖(Tip) 0.7齿根(Root) 1.1	0.1-0.15	2.2-2.8	约(about)3~4T
	60-80	25-40	2.0-3.0	齿尖(Tip) 0.8齿根(Root) 1.2	0.12-0.18	2.4-3.0	约(about)3~4T
	80-100	25-45	2.4-3.2	齿尖(Tip) 0.8齿根(Root) 1.3	0.15-0.2	2.6-3.2	约(about)4~5T
	100-125	25-50	2.6-3.4	齿尖(Tip) 0.9齿根(Root) 1.4	0.18-0.25	2.7-3.5	约(about)4~5T
	125-150	25-60	2.7-3.6	齿尖(Tip) 1.0齿根(Root) 1.5	0.2-0.3	3.0-4.0	约(about)5~6T
	150-165	25-35	2.8-4.0	齿尖(Tip) 1.2齿根(Root) 1.6	0.3-0.4	4.0-6.0	约(about)6~7T

外径 Outer diameter	实心大小 _{Size}	齿距 Distance	齿厚 Fin thickness	挤压速度(米/分) Extrusion speed(M/min)	棒温 Aluminum temperature	模温 Tooling temperature	模具寿命 Tooling life
50	18-20	1.6-1.8	齿尖(Tip) 0.5齿根(Root) 0.7	3	470-500	450-480	约(about)3~4T
60	22-25	1.7-2.0	齿尖(Tip) 0.6齿根(Root) 0.8	2.7	470-500	450-480	约(about)3~4T
70	25-30	1.8-2.2	齿尖(Tip) 0.6齿根(Root) 0.9	2.5	470-500	450-480	约(about)4~5T
80	28-35	1.9-2.4	齿尖(Tip) 0.7齿根(Root) 1.0	2.2	480-510	450-480	约(about)5~6T
90	35-42	2.0-2.8	齿尖(Tip) 0.8齿根(Root) 1.1	2	480-510	450-480	约(about)6~7T
95	35-44	2.2-2.9	齿尖(Tip) 0.9齿根(Root) 1.2	1.8	480-510	450-480	约(about)6~7T
100	35-48	2.4-3.1	齿尖(Tip) 1.0齿根(Root) 1.3	1.7	480-510	450-480	约(about)6~7T
110	35-52	2.6-3.3	齿尖(Tip) 1.1齿根(Root) 1.4	1.6	480-510	450-480	约(about)6~7T
120	35-54	3.0-3.5	齿尖(Tip) 1.2齿根(Root) 1.5	1.5	480-510	450-480	约(about)6~7开

Welding Process

Reflow soldering: a process that uses solder paste to join the contact areas between heat sinks and heat pipes. The solder pastes currently in use include high-temperature, medium-temperature, and low-temperature variants.

Melting point of low-temperature solder paste: 138 °C Melting point of medium-temperature solder paste: $160 \sim 170 \degree C$ Melting point of high-temperature solder paste: 210°C

Flat heat sink

Tooling reference round heat sink

Heat Pipe Insertion into Fins & Roll Pressing Process

Heat Pipee Process and QMAX

¢4

28

35

40

37

32

28

22

15

¢5

40

50

57

52

46

40

32

22

50

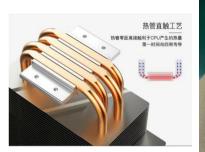
30

90

80

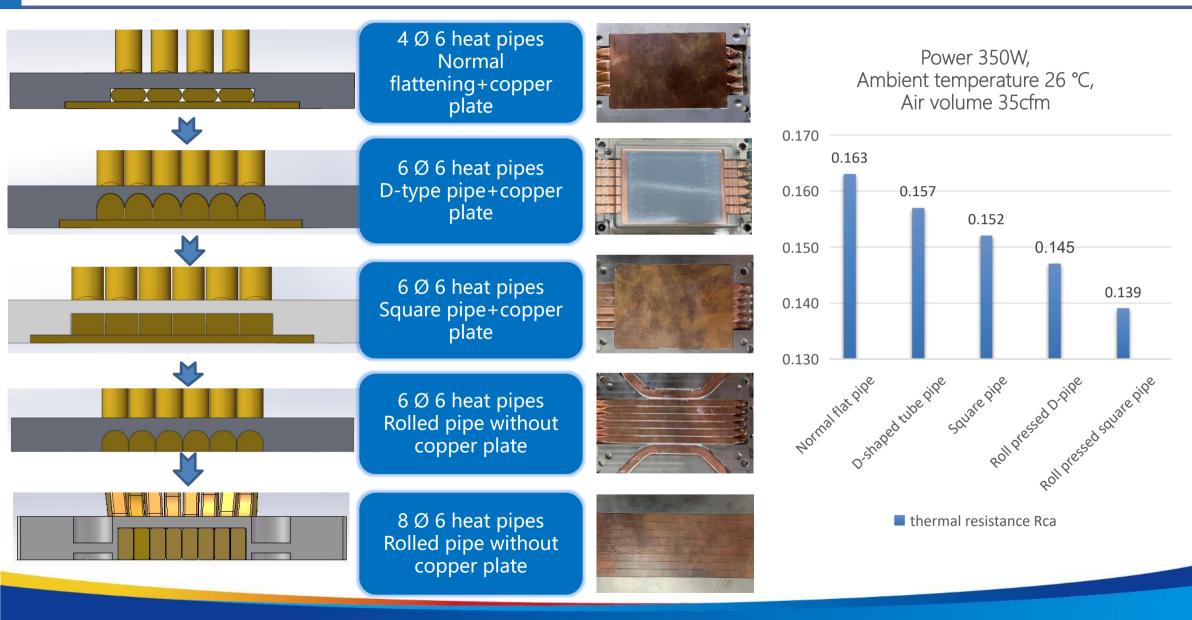
35

	80-100 [MM]
	101-120 [MM]
	121-150 [MM]
	151-180 [MM]
	181-220 [MM]
	221-270 [MM]
	271-320 [MM]
/	321-380 [MM]


Heat Pipe Insertion Process

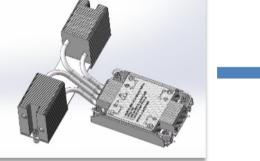
Without the need for any solder or filling medium, the heat pipe is directly inserted between the fins, and the fins wrap around the heat pipe. This increases the contact area between the fins and the heat pipe, effectively improving the heat conduction efficiency. Compared with welding, the FIN process not only optimizes thermal performance by 1-2 °C, but also has lower costs; However, compared to welded products, FIN products have a slight disadvantage in reliability.

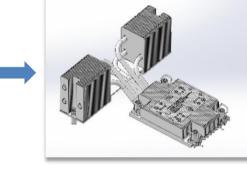
Heat Pipe Roll Bonding Process

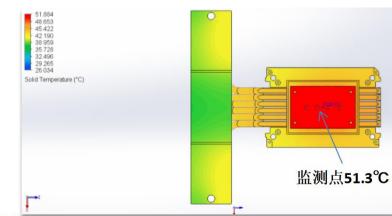


2D Roller Tube Machine 3D Roller Tube Machine

Research on the Performance of EVAC Module Heat Pipe Combination




Intel 1U EGS EVAC (normally flattened tube optimized for D-type tube)



Project Information: 1U EVAC solves 300W Request optimized design under 60CFM air volume Design concept and improvement plan: Optimization of 4 flattened heat pipes at the far end to 6 D-type heat pipes at the far end

2. Heatsin	nk Photo								
5				k Vendor	TUN	G YU ELECTRONIC	CO.,LTD.		
				rce (lbf)	(親因)				
				PU	2	300W			
				ard Model	发热块大小(40*46) open system 24±2℃ 50%				
3. Test co	ndition			virnment					
				Temp (°C)					
				umidity (RH)					
				(cfm)	60CFM				
				k grease		SC-102			
				Test Result					
Item	flow (cfm)	∆P (mm-Aq)	Tc(10) Ta (10)		ムT (で)	Power(w)	Rca(o/w)		
1	60.11	58.9	54.60	25.90	28.70	299.900	0.096		
2	60.07	61	55.80	26.40	29.40	299.800	0.098		
3	59.93	60.8	\$6.00	26.80	29.20	299.700	0.097		

2. Heatsi	nk Photo					The state		
Heatsink Vendor TUNG YU ELECTRON							CO.,LTD.	
				(俄国)				
			300W					
			Mainboard Model 发热块大小(40*46)					
B. Test co	ndition		Test envirnment open system					
		8		Temp (°C)	24±2℃ 50%			
				umidity (RH)				
		9		(cfm)	6DCFM			
				k grease	[SC-102		
				Test Result				
Item	flow (cfm)	∆P (mm-Aq)	TC(tt)	Ta (12)	Tム (つ)	Power(w)	Rca(torw)	
1	59.94	57.9	48.10	23.20	24.90	300.500	0.083	
2	60.15	60.9	48.00	23.10	24.90	300.500	0.083	
3	60.03	60.1	48.60 23.50		25.10	300.400	0.084	

Simulation results:

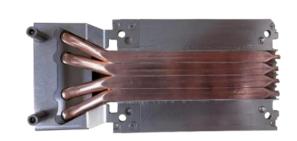
Remote 6 heat pipe design: ambient temperature of 26 °C, thermal resistance of 0.080 °C/W, temperature rise of 23.9 °C

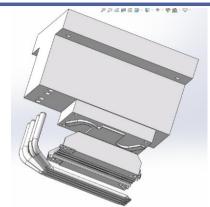
Actual test results:

Actual testing of 4 heat pipe samples at the remote end: ambient temperature of 26.8 °C, thermal resistance of 0.099 °C/W, temperature rise of 29.8 °C Remote 6 heat pipe sample actual testing: ambient temperature 26.2 °C thermal resistance

Remote 6 heat pipe sample actual testing: ambient temperature 26.2 °C, thermal resistance 0.083 °C/W, temperature rise 24.9 °C

Intel 2U EGS EVAC (normally flattened tube optimized for rolled pipe)


Project Information: 1U EVAC solves 350W Request optimized design under 70CFM air volume


Design concept and improvement plan: Optimization of copper plate welding design for double-sided rolling tube design

		Test Result								
flow (cfm)	∆₽ (mm-Aq)	ΤC (τ)	Ta (°C)	∆T (℃)	Power(w)	Rca(t/w)				
70	14	58.70	24.60	34.10	350.000	0.0974				
70	14.1	58.80	24.80	34.00	350.000	0.0971				

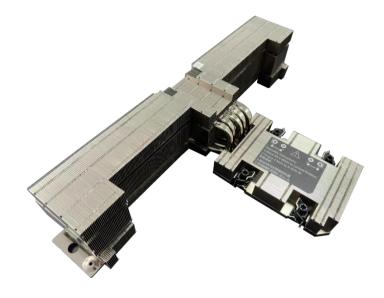
Original design (with copper plate contact chip at the bottom)

Optimization design (the bottom is a roller pressed heat pipe contact chip, and the upper surface of the roller pressed heat pipe contacts the main heat pipe to reduce thermal resistance)

		Test Result				
flow (cfm)	∆P (mm-Aq)	Τc (τ)	Ta (℃)	ΔT (℃)	Power(w)	Rca(v/w)
70	18.3	55.70	25.30	30.40	350.000	0.0869
70	18.4	55.90	25.20	30.70	350.000	0.0877
70	18.3	55.70	25.10	30.60	350.000	0.0874

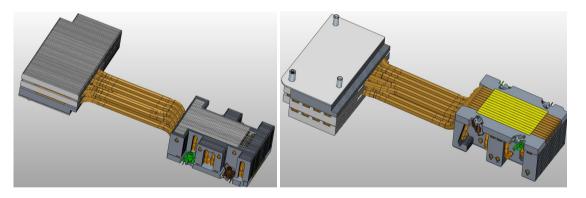
Original design result:

Main body 4D6+remote 4D6: ambient temperature 24.6 °C, thermal resistance 0.0974 °C/W, temperature rise 34.1 °C Optimization design results:


Main body 4D6+remote 4D8 roller tube: ambient temperature 25.3 °C, thermal resistance 0.0869 °C/W, temperature rise 30.4 °C

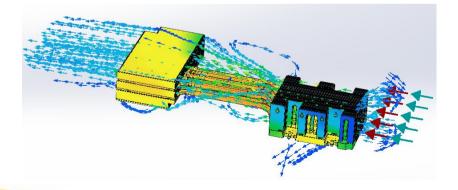
Intel BHS AP 1U EVAC

Project Information: Power 550W The ambient temperature is 35 degrees Celsius Thermal resistance requirement: 0.04 °C/W @ 90CFM Design ideas and plans: Ultra long pull far end, increase heat pipe power, reduce heat pipe thermal resistance, and lower overall thermal resistance under low air flow conditions



	Rca Results										
CFM	△P (mm-Aq)	Tc (°C)	Ta (°C)	∆T (°C)	W	Rca(°C/w)					
90	1.66	46.00	25.90	20.10	550.0	0.037					
110	2.3	44.40	26.00	18.40	550.0	0.033					
130	2.85	42.80	25.80	17.00	550.0	0.031					
150	3.5	41.90	26.00	15.90	550.0	0.029					
175	4.23	41.60	26.50	15.10	550.0	0.027					

Intel BHS AP 2U EVAC

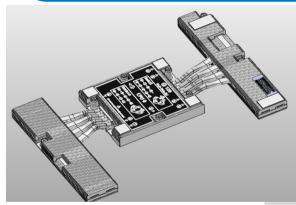


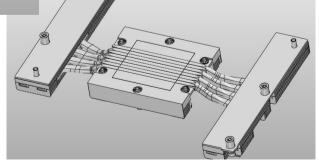
Project Information: Power 550W The ambient temperature is 35 degrees Celsius Thermal resistance requirement: 0.05 °C/W @ 75CFM Design ideas and plans: Ultra long heat pipes need to minimize thermal resistance and increase heat pipe power as much as possible

10.00	11.0	40.1	40.0	000	0.001
7.56	51.4	20.9	30.5	550	0.055
9.83	48.2	20.9	27.3	550	0.050
12.60	45.8	21.0	24.8	550	0.045
14.70	44.0	21.1	22.9	550	0.042
18.50	42.2	21.4	20.8	550	0.038
	7.56 9.83 12.60 14.70	7.56 51.4 9.83 48.2 12.60 45.8 14.70 44.0	7.56 51.4 20.9 9.83 48.2 20.9 12.60 45.8 21.0 14.70 44.0 21.1	7.56 51.4 20.9 30.5 9.83 48.2 20.9 27.3 12.60 45.8 21.0 24.8 14.70 44.0 21.1 22.9	7.56 51.4 20.9 30.5 550 550 9.83 48.2 20.9 27.3 550 550 12.60 45.8 21.0 24.8 550 550 14.70 44.0 21.1 22.9 550 550

Simulation results: Airflow of 75FM, ambient temperature of 35 °C, CPU center temperature of 60.85 °C, thermal resistance of 0.047 Actual results: Airflow of 75CFM, ambient temperature of 24.8 °C, CPU center temperature of 45.8 °C, thermal resistance of 0.045

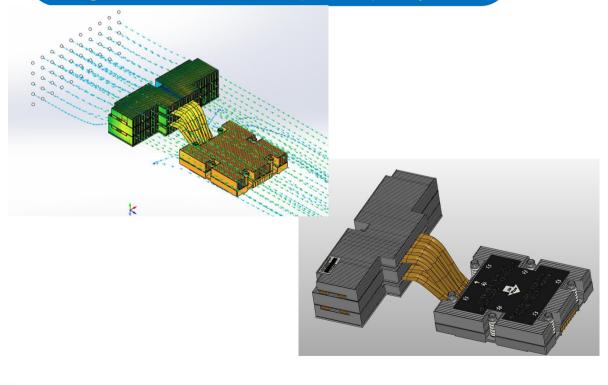
AMD SP5 1U EVAC

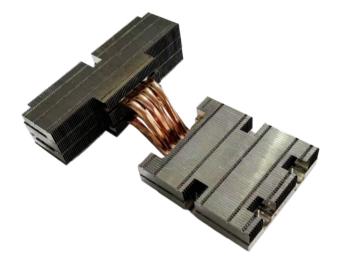



Project Information: Power 300W The ambient temperature is 35 degrees Celsius Thermal resistance requirement: 0.082 °C/W @ 35CFM Design ideas and plans: Double pull remote design, with high power of the inlet pull remote heat pipe and low power of the outlet pull remote heat pipe, differentiated design of heat pipe parameters to achieve optimal thermal resistance design

20	8.23	54.5	21.4	33.1	300	0.110
25	11.31	50.9	21.7	29.2	300	0.097
30	15.00	47.6	22.0	25.6	300	0.085
35	19.10	45.2	22.4	22.8	300	0.076
40	24.50	42.1	22.1	20.0	300	0.067

Simulation results: Airflow of 35CFM, ambient temperature of 35 °C, CPU center temperature of 57.5 °C, thermal resistance of 0.075 Actual results: Airflow of 35CFM, ambient temperature of 22.4 °C, CPU center temperature of 45.2 °C, thermal resistance of 0.076





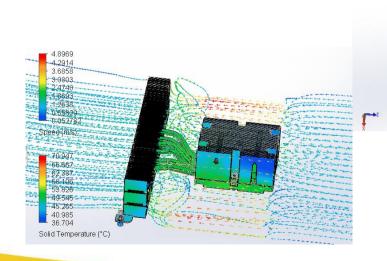
AMD SP5 1U EVAC

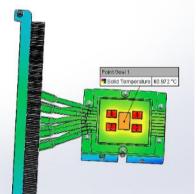
Project Information: Power 500W The ambient temperature is 38 degrees Celsius Thermal resistance requirement: 0.085 °C/W @ 40CFM Design ideas and plans: Using roller tube method within the 1U space limitation of the main body Strengthen the remote heat dissipation capability

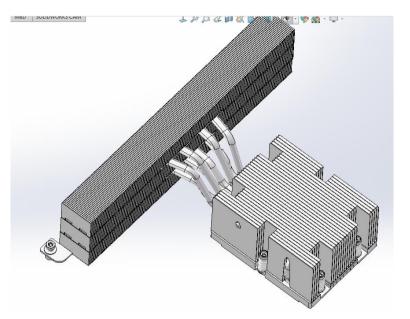
20	2.49	81.4	22.4	59.0	500.0	0.1180
30	4.50	69.1	22.7	46.4	500.0	0.0928
40	6.85	61.6	22.3	39.3	500.0	0.0786
50	9.20	57.7	22.3	35.4	500.0	0.0708
60	12.26	55.0	22.3	32.7	500.0	0.0654
20	1.30	80.6	22.5	58.1	500.0	0.1162

Simulation results: Airflow of 40CFM, ambient temperature of 38 °C, CPU center temperature of 78.5 °C, thermal resistance of 0.081 Actual results: Airflow of 40CFM, ambient temperature of 22.3 °C, CPU center temperature of 61.6 °C, thermal resistance of 0.078

AMD SP5 2U EVAC

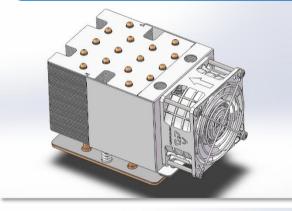

Project Information: Power 500W The ambient temperature is 30 degrees Celsius Thermal resistance requirement: 0.065 °C/W @ 51.1CFM Design ideas and plans: According to the customer's usage conditions, the encrypted and stretched FIN pieces and the thinned main FIN pieces can achieve the customer's thermal resistance target through both simulation

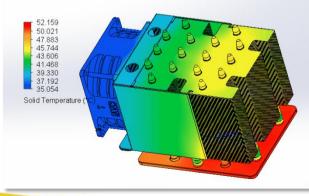

> 70.947 66.667 62.387 58.106 53.826 49.545 45.265 40.985

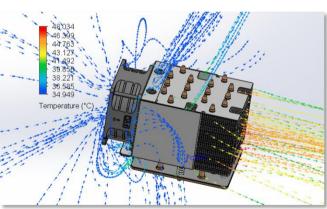

36 704

Solid Temperature (*C)

and actual samples

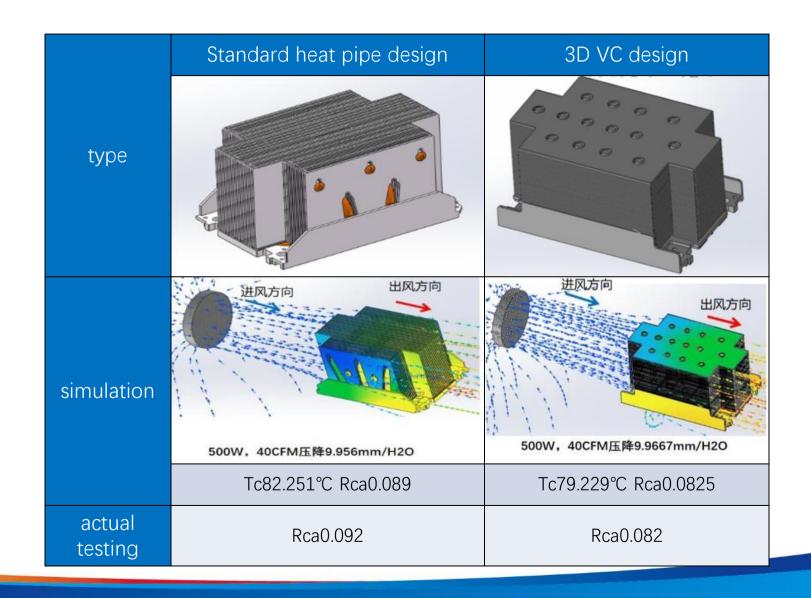



Simulation results: Airflow of 51.1CFM, ambient temperature of 30 °C, CPU center temperature of 60.972 °C, thermal resistance of 0.062 Actual results: The thermal resistance is 0.062


3D VC

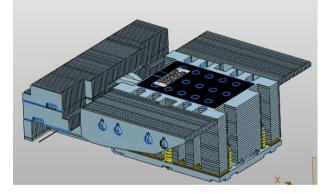


Project Information: Power 500W The ambient temperature is 35 degrees Celsius Thermal resistance requirement: 0.05 °C/W @ 110 CFM Design ideas and plans: Design and select fans based on customer requirements to achieve customer thermal resistance targets

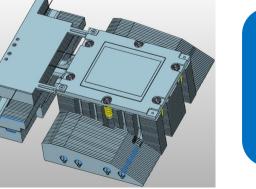

T2(t)	T4(℃)	DT2 (℃)	Power(w)	Rca(t/w)
46.7	23.5	23.2	500.000	0.0464
45.6	23	22.6	500.000	0.0452
45.6	22.8	22.8	500.000	0.0456
46.3	23.4	22.9	500.000	0.0458
45.4	22.8	22.6	500.000	0.0452

Simulation results: 500W: ambient temperature of 35 °C, thermal resistance of 0.0450 °C/W, temperature rise of 22.5 °C Actual test results: 500W: ambient temperature 23.5 °C, thermal resistance 0.0464 °C/W, temperature rise 23.2 °C

Project Information: Power 500W, ambient temperature 38 ℃ Air volume 40cfm Thermal paste TC-5888

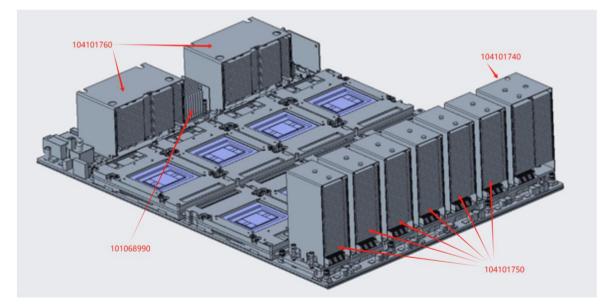

The 3D VC heat sink can achieve higher heat flux density and better thermal performance under the same FIN design conditions. This model has been optimized by 5 degrees

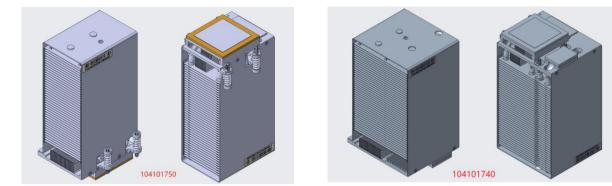
3D VC

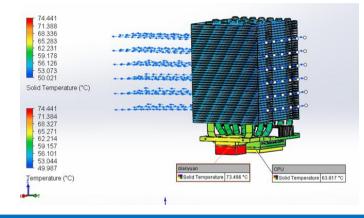

Project Information: Power 400W, ambient temperature 35 °C Require thermal resistance < 0.055 °C/W @ 60CFM Design ideas and plans: Integrating the remote welding heat pipe into a 3D VC to reduce thermal resistance and increase the heat dissipation area of the main body

	i Cot Neoun										
Flow (cfm)	∆P (mm-Aq)	Tc (°C)	Ta (℃)	∆T (°C)	Power(w)	Rca(°c/w)					
40	6.83	49.20	26.20	23.00	400	0.058					
60	12.00	44.50	25.90	18.60	400	0.047					
80	18.80	41.80	25.70	16.10	400	0.040					
100	26.70	39.90	25.60	14.30	400	0.036					

Simulation results: 400W: ambient temperature of 35 °C, thermal resistance of 0.05 °C/W, temperature rise of 55 °C Actual test results: 400W: ambient temperature 25.9 °C, thermal resistance 0.047 °C/W, temperature rise 18.6 °C

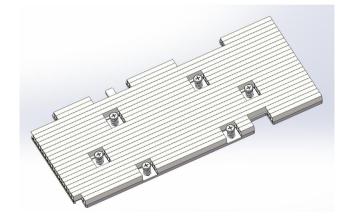

AI Server

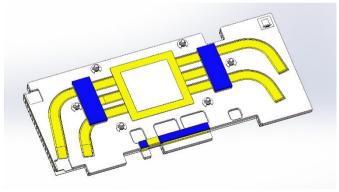


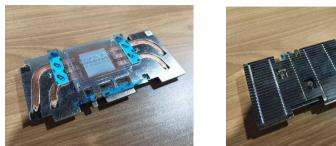

Project Information: Power 8 * 80W, 4 * 20W, ambient temperature 50 $^{\circ}$ C Require all chips to meet the thermal performance specification of @ 50cfm

Design ideas and plans:

Based on the system's inlet and outlet air and GPU heat sink layout, comprehensively design the Switch and Retimer heat sinks as well as their locking methods




Simulation results: 80W: ambient temperature of 50 °C, Tc63.82, Temperature rise 13.82 °C Actual test results: 80W: ambient temperature 24 °C, Tc 36.5 °C/W, temperature rise 12.5 °C

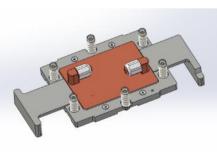

ByteDance Project

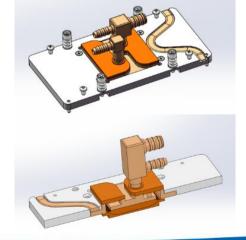
Project Information: Power 100W Request air volume of 15cfm, thermal resistance < 0.0275 °C/W

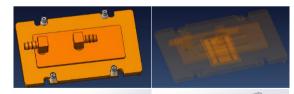
Actual test results: 100W: ambient temperature of 26 °C, thermal resistance of 0.264 °C/W, temperature rise of 26.4 °C Technology Study / Product case Liquid-Cooled

Liquid Cooling Technology Approach

Product Features: Cold plate material: Copper T2 with skived fin channels, ensuring high thermal efficiency. Vacuum-brazed construction for high reliability and low thermal resistance. Operating pressure: 4 Bar; Burst pressure: 10 Bar. Compatible with Intel EGS CPU cooling solutions. TDP ≤500W **Product Features:**


Cold plate material: Copper T2 with skived fin channels, delivering high thermal efficiency. Vacuum-brazed construction ensures high reliability and low thermal resistance. Design pressure: 4 Bar; Burst pressure: 10 Bar. Compatible with AMD SP5 CPU cooling solutions. TDP ≤600W **Product Features:**


Cold plate material: Copper T2 with T-shaped skived fin channels, ensuring ultra-high thermal efficiency. Vacuum-brazed construction guarantees exceptional reliability and ultra-low thermal resistance. Design pressure: 4 Bar; Burst pressure: 10 Bar. Compatible with NV H100 GPU cooling solutions. TDP ≤1200W.


Product Features:


TDP $\leq 2000W$.

Cold plate material: Copper T2 with novel high-efficiency, lowflow-resistance structure, embedded with graphene strips to enhance thermal diffusion. Hybrid 3D vapor chamber (3DVC) and cold plate design (under development) for further thermal resistance reduction. Design pressure: 4 Bar; Burst pressure: 10 Bar. Compatible with high-power thermal management solutions.

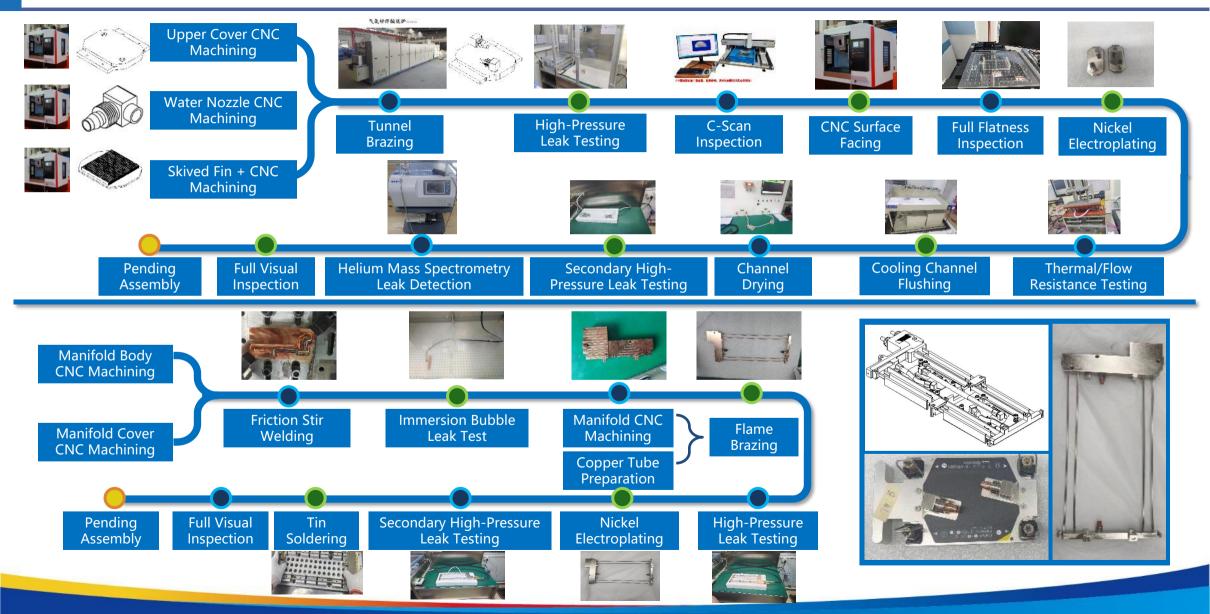
Skiving Process

Precision CNC Micro Cold Plate Relieving Machine

Heavy-duty Precision CNC Shovel Tooth Grinding Machine

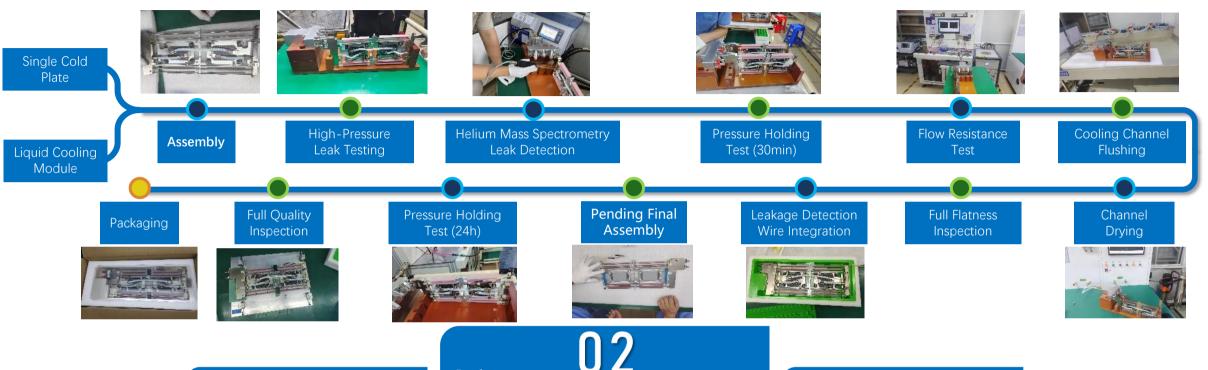
Advantages of skived-fin heat sinks

•The heat sink and base plate are integrally extruded from a single profile, achieving 100% thermal conductivity of the material without thermal resistance junctions.


•Skiving technology enables ultra-thin fin manufacturing with minimized pitch, maximizing heat dissipation surface area within confined spaces to optimize thermal performance.

•This process features simplified manufacturing and reduced tooling costs.

	Сор	oper Fin lengt	th limit 60mm		Amu	inum Fin leng	th limit 6	i0mm		1	The second se	
	Fin Height (mm)	Fin Thickness (mm)	Min Fin (mm	-	Fin Height (mm)	Fin Thickness (mm)		Fin Gap mm)	•	•		
	1	0.05	0.05	5	1	0.07	(0.07				
	2	0.07	0.07	7	2	0.1		0.1				
	3	0.1	0.1		3	0.1		0.1				
	4	0.15	0.15	5	4	0.15	(0.15				
	5	0.2	0.2		5	5 0.2		0.2				
ork tak :e/ mn		c-axis Z	Z -axis	max width	Fin max Thick	Fin mir mirs Thi		Max stepdo wn	Min Stepdown	Fin Height	precision	
800*1	600	1500	700	AL 60 CU 30			0.2	10 mm	1:1	AL 140 CU 40	±0.003	


Split-type Liquid Cooling Heatsinks Manufacturing Process

Manufacturing Process and Techniques for Modular Liquid Cooling Heatsinks

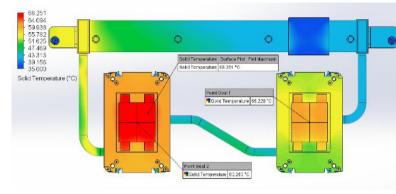
01

Assemble the single cold plate, then integrate with the liquid cooling module per assembly drawings.

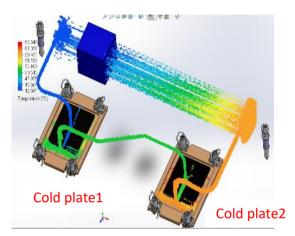
Perform:

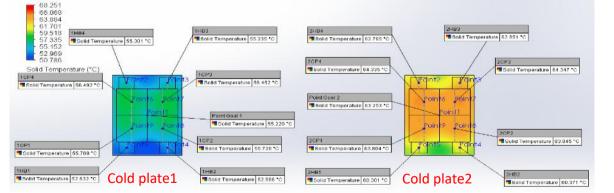
High-pressure leak test. Helium mass spectrometry leak detection. 30-minute pressure holding test. Flow resistance test. Cooling channel flushing & nitrogen-purge drying. Full flatness inspection (tolerance: ± 0.05 mm).

Assemble: leakage detection wire, thermal grease (\geq 5 W/m·K), thermal pads, PSA, and protective cover. Conduct 24-hour pressure holding test.


03

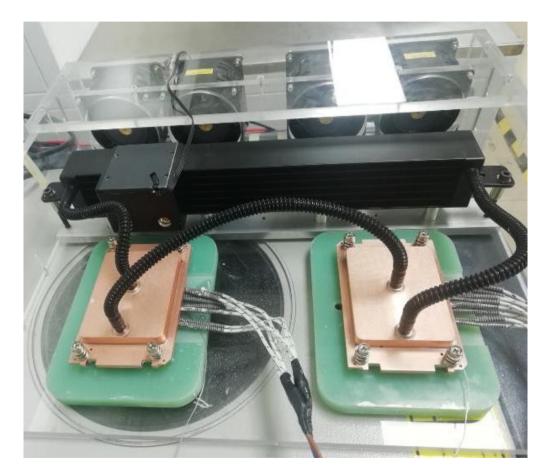
Full quality inspection (dimensional, visual, functional). Package per ESD/moistureproof specifications.


Intel-Integrated Liquid Cooling Heatinks



Flow Rate: 0.693 L/min Ambient Temperature: 35°C Power Dissipation: 350 W Design Approach & Solution: Design the cold plate geometry in accordance with client specifications and select fans to achieve the target thermal resistance per client requirements

Thermal contour map of the cold plate and corresponding chip. The maximum chip temperature is 68.2°C.



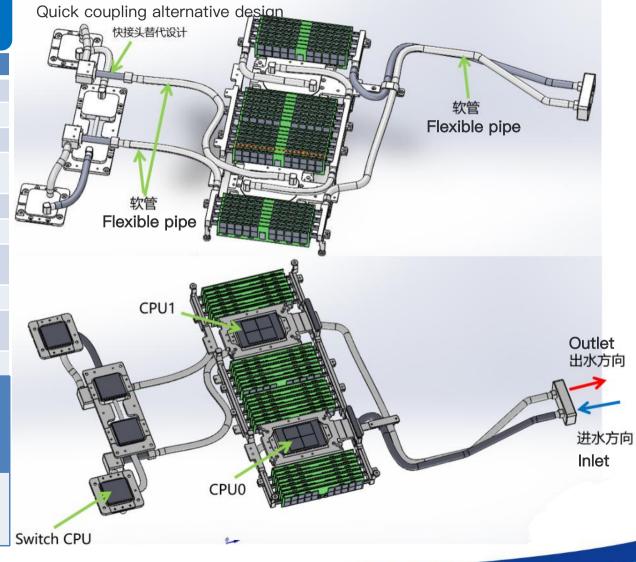
The thermal map of the liquid cooling plate and corresponding chips shows Tc CPU1 at 55.22°C and Tc CPU2 at 63.25°C, both satisfying the requirement of remaining below 70°C.

IN OUT R	Diff	Fluid Temp	Ave	-7.8501	°C	~
IN OUT L	Diff	Fluid Temp	Ave	-8.2362	°C	~
IN OUT LP	Diff	Fluid Temp	Ave	-15.904	°C	~
IN OUT R	Diff	Press Diff	Ave	1698.2	Pa	~
IN OUT LP	Diff	Press Diff	Ave	5012.4	Pa	~
IN OUT L	Diff	Press Diff	Ave	1698.3	Pa	~
PUMP IN OUT	Diff	Press Diff	Ave	-8719.6	Pa	~
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-172.57	Pa	~
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-140.45	Pa	~
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-62.142	Pa	~
	0.10	0.010		04 540		

Integrated Liquid Cooling Heatinks

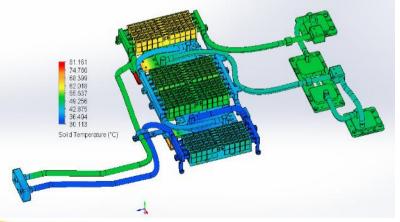
0-1						~			
0-									1 TCI
30-									测试
20-									
10-									
0-				140 1	60 180	200 220	240 260	280 3	00 CH288
0-	20 40	60 80	100 121	9 140 1	au 160	200 220 P1(W)	240 260 P2(W)	280 3 F(kgf)	CH288
0- 	20 40 T2(°C) 51.90	60 80 T3(°C) 8888.88	100 120 T4(°C) 26.00	0 140 1 T5(°C) 8888.88	60 180 T6(°C) 8888.88	200 220	2.40		CH286
0- 11(℃) 46.90	T2(°C) 51.90	T3(°C)	T4(°C)	T5(°C)	T6(°C)	P1(W)	P2(W)	F(kgf)	CH2RE
T1(°C) 46.90 0.00	T2(°C) 51.90 0.00	60 80 T3(°C) 88888.88 0.00	T4(°C) 26.00 0.00	T5(°C) 8888.88 0.00	T6(°C) 8888.88 0.00	P1(W) 349.93	P2(W) 350.38	F(kgf) 0.24	RPM2
0- 11(℃) 46.90	T2(°C) 51.90	T3(°C) 8888.88	T4(°C) 26.00	T5(°C) 8888.88	T6(°C) 8888.88	P1(W) 349.93 349.81	P2(W) 350.38 350.28	F(kgf) 0.24 0.24	

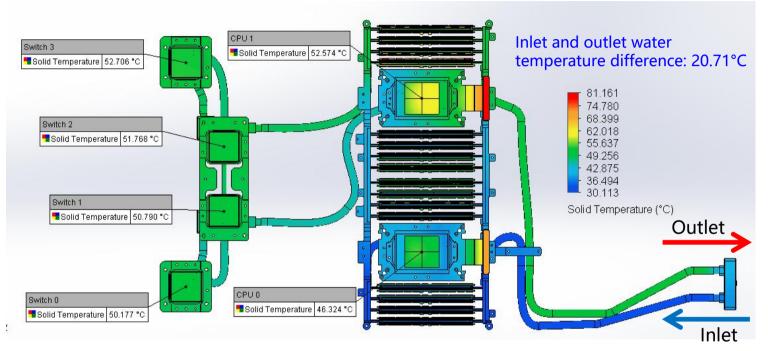
Thermal Block Simulation Test Results (Closely Matching Simulation Data): Load Power: 350W Ambient Temp (T4): 26° C DT = 46.9° C - 26° C = 20.9° C DT = 51.9° C - 26° C = 25.9° C


CPU+DIMM+GPU Liquid Cooling Project

Design Approach & Solution:

Developed the integrated cold plate configuration based on client specifications, achieving the 1U height constraint and thermal resistance target.


Design parameter	Requirement					
CPU Configuration	EGS, 350W*2					
Ambient Temperature	35 (°C)					
Coolant Fluid	25% PGW (Deionized Water + Corrosion Inhibitor + Biocide)					
Cold Plate Inlet Temperature	30 (°C)					
Flow Rate (LPM)	1.0 (Series Configuration)					
Tcase (°C)	<56°C (1LPM)					
Thermal Resistance (°C/W)	≤0.075(@1LPM, incl. TIM: Dow Corning TC-5888, 0.1mm thickness)					
Pressure Drop (kPa)	Substitution Sector					
Cold Plate Pressure Rating	≥10					
Material	Cu					
CPUVR: 2 grou TDP consumption Memory total	power consumption TDP = 350W2 = 700W; ups in total, each group contains 8 chips of 3.375W, total power = 3.375W x 8 x 2 = 272 = 54W; power consumption TDP = 10W32 = 320W; itch total power consumption = 59.2W4 = 236.8W;					
CPU chip Tcase ≤56°C; CPUVR chip Tcase ≤120°C; Memory Tcase ≤82°C; PCIe Gen5 Switch chip Tcase ≤102°C;						


CPU+DIMM+GPU Liquid Cooling Project

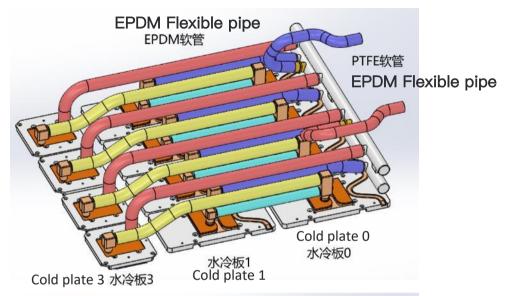
Simulation Boundary Conditions	Operating Parameters				
CPU Power Consumption	350 W*2				
Ambient Temperature (°C)	35				
Coolant	25% PGW				
Cold Plate Inlet Water Temperature (°C)	30				
Flow Rate(LPM)	1.0 (Series)				
Material	Cu				
Heat Source Type	EGS				
Switch CPU Power Consumption	59.2 W*8				
Memory Power Consumption	10 W*32				
VR Power Consumption	27W*2				

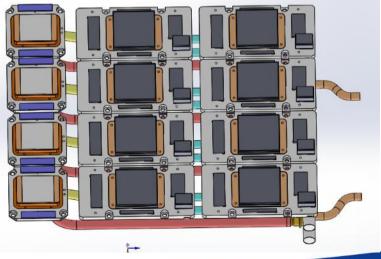
(1LPM PG25 inlet water temperature 30°C) Power 350W * 2

-	Name	💌 Type 💌	Para 💌	Calc 💌	Value	Unit 💌	%
	IN OUT CPU 1	Diff	Fluid Te	Ave	-5.499	°C	~
	IN OUT	Diff	Fluid Te	Ave	-20.717	°C	4
	IN OUT Switch	Diff	Fluid Te	Ave	-3.3467	°C	~
	IN OUT CPU 0	Diff	Fluid Te	Ave	-5.5165	°C	~
	IN OUT	Diff	Press Diff	Ave	28551	Pa	~
	IN OUT Switch	Diff	Press Diff	Ave	9622.0	Pa	~
	IN OUT CPU 1	Diff	Press Diff	Ave	3365.2	Pa	~
	IN OUT CPU 0	Diff	Press Diff	Ave	2177.0	Pa	~

CPU chip surface maximum temperature: 52.57° C Specification Tc < 56° C Switch chip surface maximum temperature: 52.7° C Specification Tc < 102° C VR chip surface maximum temperature: 81.16° C Specification Tc < 120° C Memory chip surface maximum temperature: approximately 80° C Specification Tc < 82° C

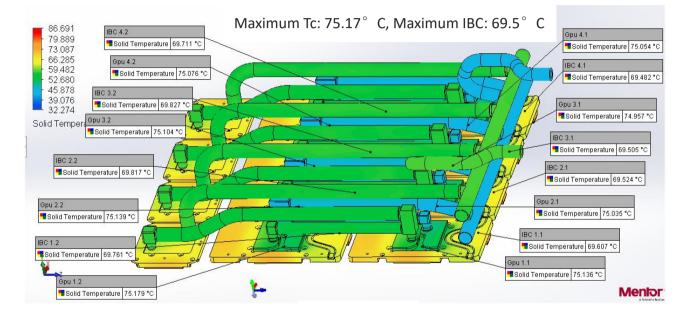
Multi-GPU Liquid Cooling Project

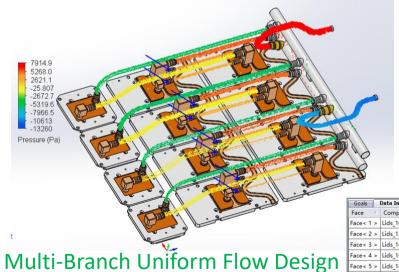



Design Approach and Solution:

Develop an overall cold plate layout based on client requirements to meet uniform flow distribution specifications and thermal resistance targets.

Design Parameters	Requirements
GPU/Switch Specifications	700W*2 + 150W (IBC 18W, other power ratings see attached table)
Ambient Temperature (°C)	35
Coolant	25% PGW (Deionized water + Corrosion inhibitor + Biocide)
Cold Plate Inlet Water Temp (°C)	45°C
Flow Rate (LPM)	8 (Parallel/Series)
Tcase (°C)	<75°C (at 8 LPM) Preliminary estimate
Thermal Resistance (°C/W)	\leq (at 8 LPM, incl. thermal grease - Dow Corning TC-5888, thickness 0.1mm)
Flow Resistance (kPa)	≤ kPa (at 8 LPM, incl. cold plate, piping, quick connectors)
Cold Plate Pressure Rating (bar)	≥10
Material	Cu




Multi-GPU Liquid Cooling Project

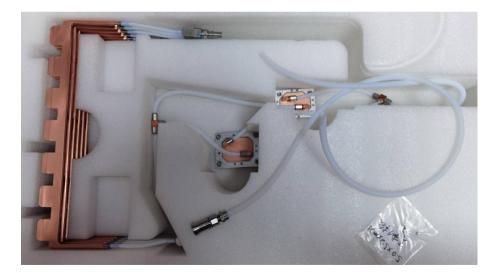
Simulation Boundary Conditions	Operating Parameters
GPU/Switch Power Consumption	700W*2 + 150W
Ambient Temperature (°C)	35
Coolant	25% PGW
Cold Plate Inlet Water Temp (°C)	45
Flow Rate (LPM)	8.0 (Parallel/Series)
Material	Cu
Heat Source Type	

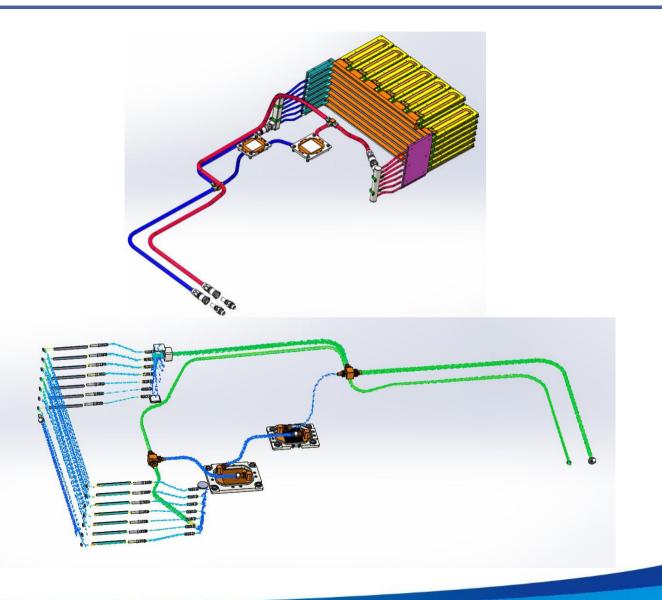
(8LPM PG25 inlet water temperature 45 $^{\circ}\,$ C) Power 700W * 2 + 150W

The flow rates of each waterway are shown in the table below

Goals	Data Inspector	Messages Parametric Stu	idy			
Face /	Component	Parameter	Min	Max	Average	Surface [m ²]
Face < 1 >	Lids_10-2	Volume Flow Rate [l/min]			1.0390	1.7827E-05
Face< 2 >	Lids_12-2	Volume Flow Rate [l/min]		1	1.0186	1.7827E-05
Face< 3 >	Lids_14-2	Volume Flow Rate [l/min]			1.0449	1.7827E-05
Face < 4 >	Lids_16-2	Volume Flow Rate [l/min]			1.0147	1.7827E-05
Face < 5 >	Lids_18-2	Volume Flow Rate [l/min]			1.0453	1.7827E-05
Face < 6 >	Lids_20-2	Volume Flow Rate [l/min]			1.0147	1.7827E-05
Face< 7 >	Lids_22-2	Volume Flow Rate [l/min]			1.0408	1.7827E-05
Face < 8 >	Lids 24-2	Volume Flow Rate [l/min]			1.0170	1.7827E-05

Front-Side Temperature Contour Map

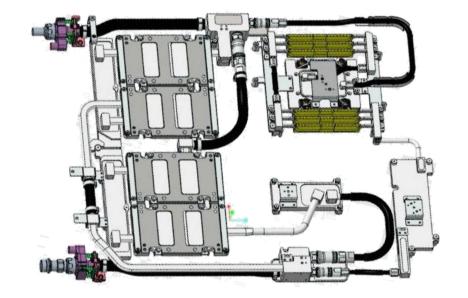

Liquid Cold Wall Project



Project Overview:

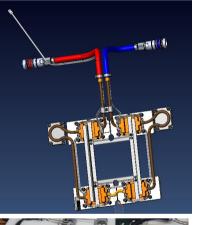
The liquid cold wall serves as the thermal exchange zone, requiring direct thermal interfacing with 36 PCIe cards.

The highly complex internal flow channels pose significant design challenges and even greater manufacturing complexities.

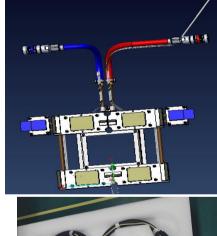

Full-Coverage Liquid Cooling Project

Project Overview:

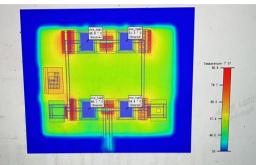
Full-coverage liquid cooling implementation within 1U height constraints, with GPU modules restricted to a 0.5U vertical profile. This configuration presents extreme thermal design challenges requiring advanced microchannel optimization and precision manufacturing.

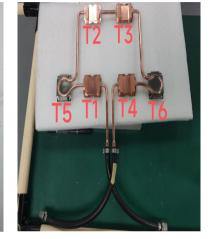


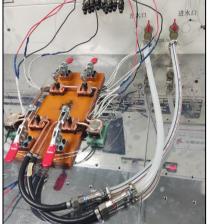
Switch Liquid Cooling Project



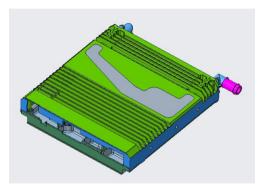
Project Overview:

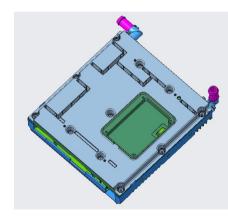

Power: 200W Tcase Requirement: <60°C (JEDEC JS-709 compliant) Total System Pressure Drop: <20 kPa (ISO 5167 validated)

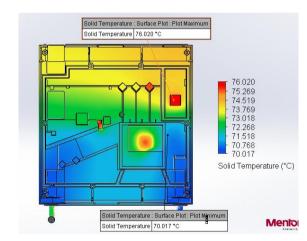

PUL

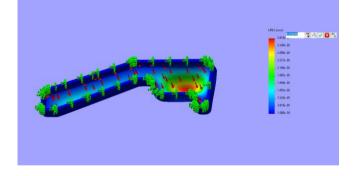


KEY PART	TJ	SPEC	KEY PART	TC	SPEC
nvs_0	70.4 .	99	nvs_0_mose(max)	73.8	85
nvs_1	73.3	99	nvs_1_mose(max)	73.6	85
nvs_2	75.8	99	nvs_2_mose(max)	76.3	85
nvs_3	78.6	99	nvs_3_mose(max)	76	85
FPGA	83.4	100	State of the second second second		
PEX	+ 59.5	105	F. C.		
HMC	83.2	100	Sa a statistica de la casa de		





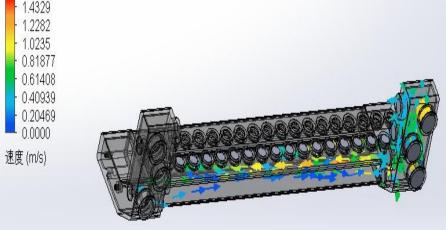

Item	北重 (L)	T1(°C)	T2(°C)	T3(°C)	T4(°C)	T5(°C)	T6(°C)	齐崔(°C)	Tૠ(°C)	T∰B(°C)	改奉 *4(W)	功率*2(W) (T5 & T6并联)	基整1(°C) (T1-T燈)	基整2(°C) (T2-T燈)	^{道德3(°C)} (T3-T燈)	基整4(°C) (T4-T提)	連続5(°C) (T5-T坡)	基整6(°C) (T6-T选)	总流阻(Kpa)
1#	1.01	45.35	47.30	49.90	52.75	45.65	49.85	26.45	38.75	45.30	200.00	50.00	6.60	8.55	43.30	14.00	6.90	11.10	13.91
流阻测试 0.95L	0.96																		12.65



Project Overview: Power: 30W Coolant Temperature (TC) <80°C Deformation <0.04mm under 1MPa pressure

Both thermal and stress simulations meet customer requirements, with physical testing results aligning with simulation data.

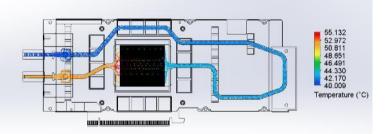
Manifold Project



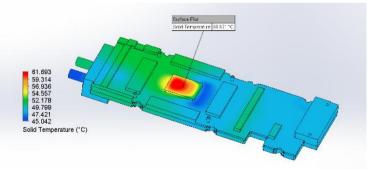
Project Overview: Single-tube inlet flow rate: 15 LPM Simulation requirements: Pressure drop and branch flow distribution evaluation (Single-inlet configuration only)

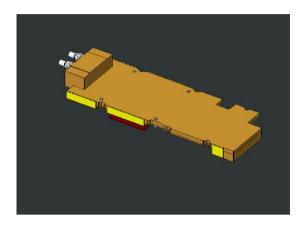
Flow Simulation Results:

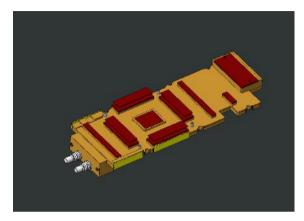
Inlet flow per tube: 15 LPM Total flow rate: 45 L/min Minimum CPU inlet/outlet flow rate: 1.9 L/min (meets requirements).

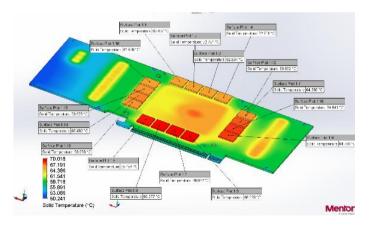

(€ 🕙 🐠		>	*z				
目标	数据检查器]						
面	组件	参数	最小值	最大值	平均值	表面积 [m²]			
Face< 1 >	封盖_2-1	ngp体积流量 [l/min]			14.995	0.00022463			
Face< 2 >	封盖_1-1	ngp体积流量 [l/min]			14.997	0.00022466			
Face< 3 >	封盖-1	ngp体积流量 [l/min]			15.008	0.00022483			
Face< 4 >	<u>封盖_3-1</u>	ngp体积流量 [l/min]			-2.3304	9.3622E-05			
Face< 5 >	封盖_4-1	ngp体积流量 [l/min]			-2.3241	9.337E-05			
Face< 6 >	封盖_5-1	ngp体积流量 [l/min]			-2.3291	9.357E-05			
Face< 7 >	<u>封盖_</u> 6-1	ngp体积流量 [l/min]		6	-1.9112	7.6782E-05			
Face< 8 >	封盖 7-1	ngp体积流量 [l/min]			-1.8974	7.6225E-05			

Graphics Card Liquid Cooling Project




Project Overview:

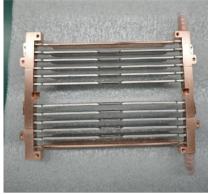

Main chip: 360W; 32 DDR chips: 64W; 23 VR chips: 57.5W \rightarrow Total 481.5W Ambient temp: 50°C Coolant: 25% ethylene glycol, inlet temp 40°C, flow rate 0.6LPM Requirement: Main chip temperature rise <25°C.

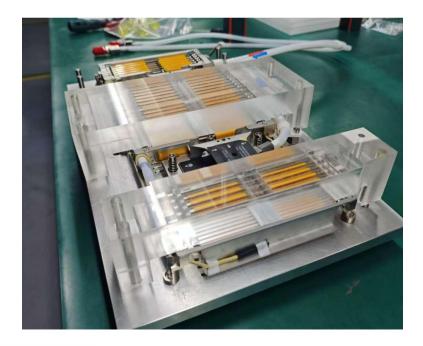


Differential pressure: 6.54KPa

Simulation result:

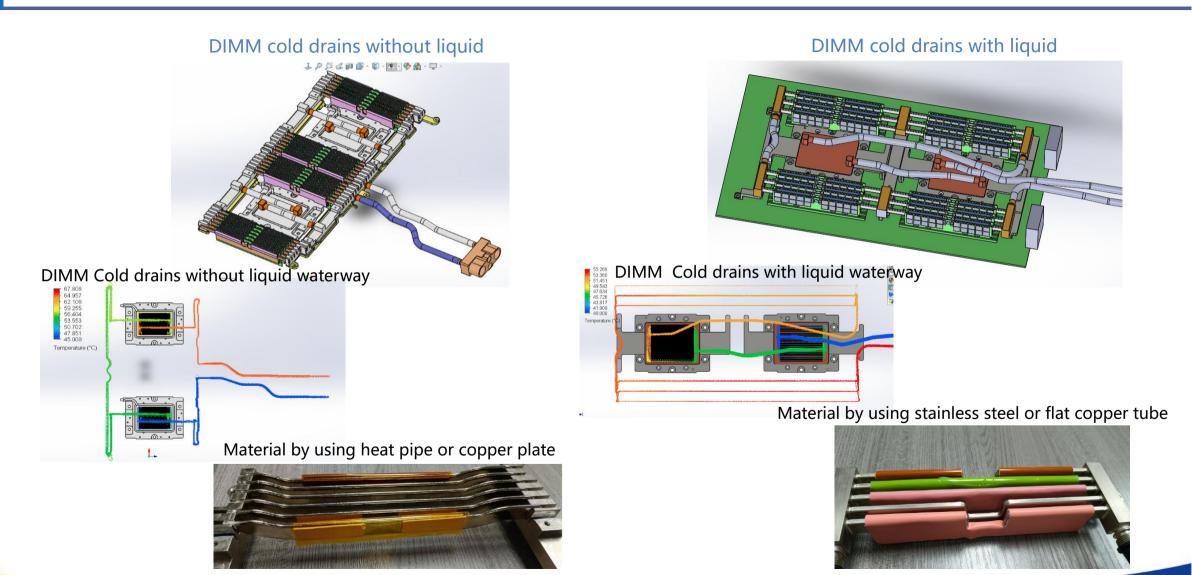
Main chip 60.671 °C ,temperature rise20.671 °C actual test: main chip temperature rise19.1°C

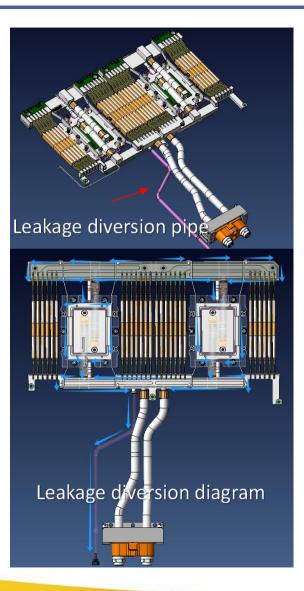

DIMM Cold Plate Process Control Inspection

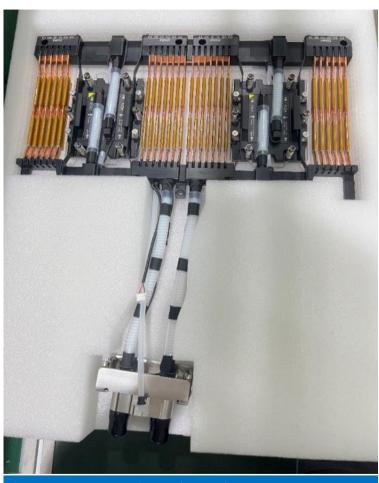


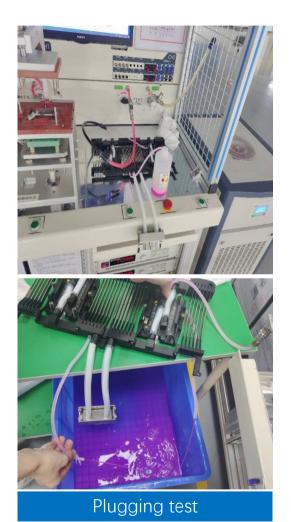

Project Overview:

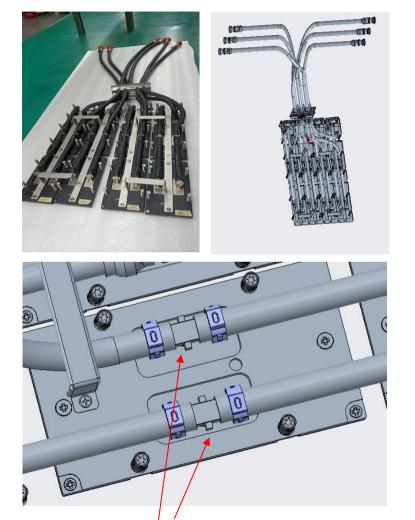
The DIMM cold plate also serves structural functions. DIMM pitch, straightness, and positional tolerance critically affect assembly. Jigs are used throughout the process to verify and inspect dimensions, ensuring smooth memory module installation/removal after assembly.

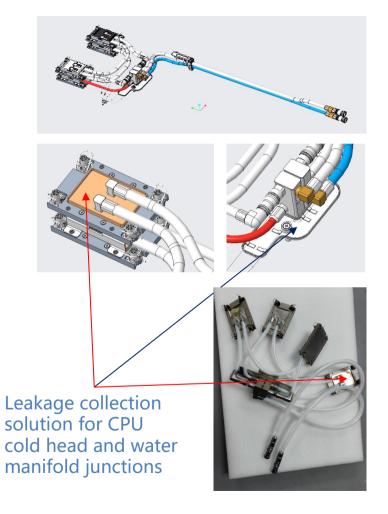


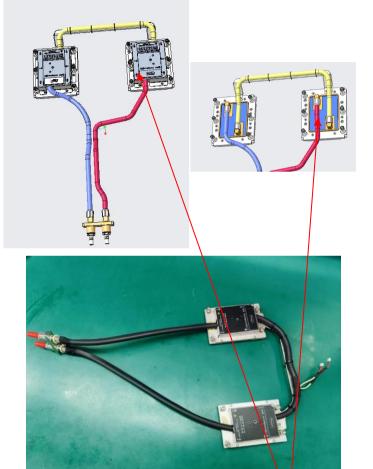



DIMM Cold Type System with Liquid & without Liquid Design


Leakage Diversion Design




Actual product


Leak-Free Collection Design



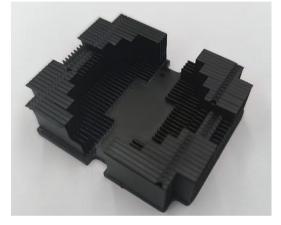
Leakage collection solution at CPU cold head water ports

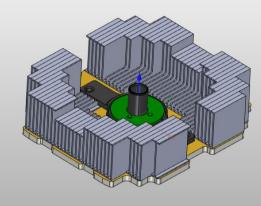
Manifold

R&D of New Technologies

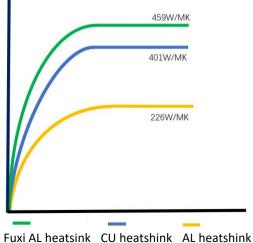
Graphene Composite Material Heat Sink

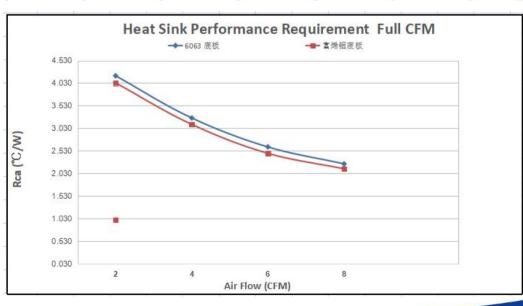
results)

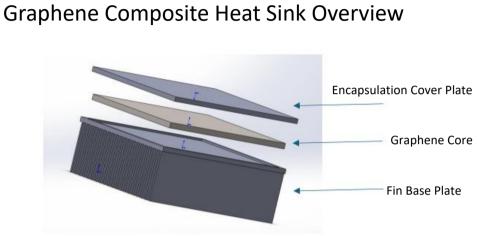

Principle	Overview			ltem	Graphite Composite	Aluminum Alloy	Remarks / Conclusion
functional n materials ar	y modifying the re naterials, the carb re fully dispersed atrix, forming		nin	Cost	Manufacturing cost is 20- 50% lower compared to aluminum alloy	_	Graphite composite offers lower manufacturing costs.
interconnec	cted networks. Th	is transforms the		Density	1.6–1.7 g/cm ³	2.7 g/cm ³	-
material wit	lly resistant resin th	into a novel compo mal conductivity.	osite	Thermal Conductivity	5-120	30–270 W/(m·K)	Wider conductivity range; heat dissipation efficiency can exceed that of aluminum alloy.
	xtruded heatsink 70*65*9mm	Graphene compo 70*65*9mm	site heatsink	Thermal Emissivity	>0.9	0.05	Higher emissivity improves radiative heat dissipation.
Specifications				Heat Dissipation	Flexible structural design	Related to structural design	Overall thermal performance is better; can be significantly improved
Ambient temperature	31.9	31.8					through design optimization.
Power (W)	5.06A*2.2V	5.06A*2.2V			Excellent	Excellent	Meets high-strength,
MOS tube flat meal	89.4	89.5		Comprehensive Performance			high-rigidity requirements; graphite-based composites have excellent overall performance.
Temperature rise	57.5 Figure 1 Com	57.7 npares test			(See Figure 1	to compare test	


(See Figure 1 to compare test results)

Fuxene Aluminum Heat Sink


Heat sinks welded with Fuxi aluminum base plates perform approximately 2° C better than those with 6063 aluminum bases under identical test conditions.


Fuxi aluminum can be manufactured as flat plates or extruded into structural profiles.


Thermal conductivity

Sample no.	Tc(℃)	Ta(℃)	ΔTc(℃)	Power(W)	Rca(°C/W)	Q(CFM
	74.1	23.8	50.3	12	4.192	2.0
	63.0	23.9	39.1	12	3.258	4.0
6063 底板	55.5	24.1	31.4	12	2.617	6.0
-	50.8	23.9	26.9	12	2.242	8.0
	72.6	24.2	48.4	12	4.033	2.0
	61.5	24.1	37.4	12	3.117	4.0
富烯铝底板	53.8	24.1	29.7	12	2.475	<mark>6.</mark> 0
	49.7	24.1	25.6	12	2.133	8.0

Graphene-Aluminum Composite Heat Sink

Graphene Composite Heat Sink Exploded View Diagram

Product Name: Graphene Composite Heat Sink

Specifications: 80mm*80mm*32mm

Structure: Composed of graphene layers with longitudinal thermal conductivity as the core, encapsulated within an aluminum alloy outer shell.

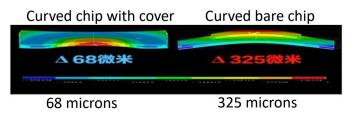
Connection Method: High-Pressure Brazing

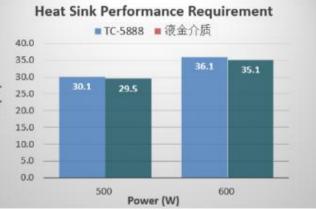
Performance		
Indicators	parameter	unit
Color	grey	-
Specifications & Dimensions	<280*280	mm
Thickness	0.7-150	mm
Hardness	65-70	Shore D
Density	2.4-2.6 (±0.2)	g/cm³
Specific Heat	800	J/kg.k
Bending Hardness	60	MPa
Operating Temperature	-40-200	°C
Thermal Performance		
Z-Direction Thermal Conductivity	40-60	W/m-K
In-Plane Thermal Conductivity	500-600	W/m-K
Thermal Diffusivity	280-300	mm²/s
In-Plane Coefficient of Thermal Expansion	6-8	10-6/K

Composition: As shown in the diagram, the middle layer is graphene, the upper section is an aluminum structure, and the base is also aluminum. **Process:** Encapsulates graphene sheets into the aluminum heat sink using a high-pressure brazing process, currently under iterative testing of various high-pressure brazing methods.

Objective: Similar to the vapor chamber principle, aims to maximize graphene's high in-plane thermal conductivity to reduce the heat sink's thermal resistance. **Status:** The project is under development, with no estimated completion timeline due to technical challenges in high-pressure brazing.

Liquid Metal Thermal Paste


Liquid Metal Thermal Paste LM-188J


Product advantages:

low thermal resistance, high thermal conductivity, thin thickness, low thermal expansion, and good applicability.

Suitable for use in low installation pressure, large-size, and high-power chips.

	Project	Unit	Value	ĺ
J	Appearance Color	-	Silver	
	Status	-	Paste	
	Odor	-	none	-
	Thermal Conductivity	W/ (m-K)		ΔTc(°C)
	Thermal Resistanc	°C-cm2/W	0.0248	
	(20psi@80°°C)	K/W	0.0034	
	Thickness	mm	0.04	
	Density	g/cm³	6.36	
	Corrosiveness	Corrosive to Aluminum	Non-corrosive to gold, silver, copper, nickel, and their alloys	
	Shelf Life	Months	12	

Under 500W@60CFM conditions: Liquid metal outperforms TC-5888 thermal grease by 0.6°C

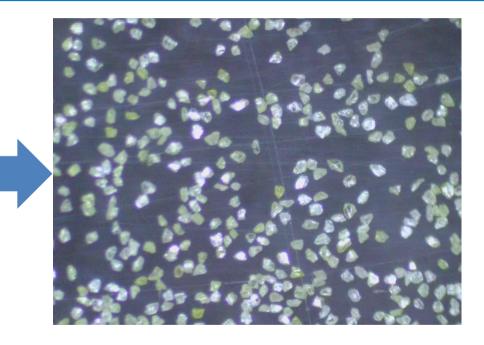
Under 600W@60CFM conditions: Liquid metal outperforms TC-5888 thermal grease by 1.0°C.

Disadvantages: Liquid metal thermal paste can corrode aluminum, but it can be used on all-copper heat sinks, especially for higher power, where the benefits are greater.

Challenges: Since it is liquid metal, it cannot be brushed onto the heat sink and must be applied by the customer on the chip surface.

Advantages: According to comparative test results, under 600W@60CFM conditions, using liquid metal thermal paste results in a temperature rise 1° C lower than when using TC-5888 thermal grease.

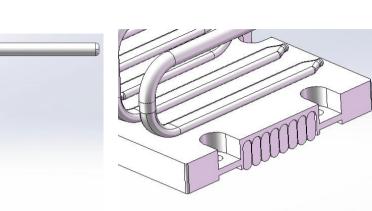
Sintered Capillary Structure of Micro-Nano Materials in Heat Pipes


Traditional heat pipes use copper powder sintering for the internal structure.

The internal sintering incorporates micro-nano thermal conductive materials, achieving a thermal conductivity 2 to 2.5 times that of copper powder and increasing capillary force by more than three times.

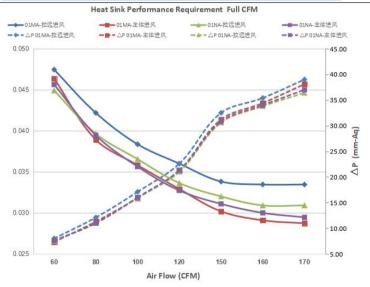
Objective: Improve the heat pipe's Qmax while reducing its thermal resistance to lower the overall module's thermal resistance.

Expectation: Under 550W module conditions, \triangle T is expected to decrease by 4-5° C.


Cost: The unit price of a single heat pipe is expected to increase by approximately 1%.

Verification: There are currently process limitations, and technical development is ongoing. Module verification is expected to be completed by June 2025.

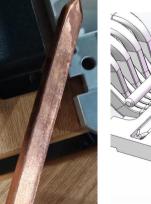
D-shaped heat pipe roll-pressed direct contact design



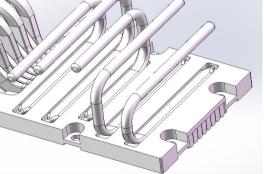
The D-shaped heat pipe roll-pressing process only requires flattening the convex side of the heat pipe. The pressing stroke is shorter than that of standard flatting processes, and both sides of the heat pipe are more evenly stressed. As a result, the heat pipe experiences less indentation and deformation after rollpressing, achieving a flatness of less than 0.077. Additionally, the R-angle gap between heat pipes is smaller, ensuring tighter pipe alignment and reducing thermal conduction resistance.

Standard flattened pipe aluminum plate archaed groove

The aluminum plate groove for D-shaped heat pipe roll-pressing only needs to be designed as a rectangular groove, which simplifies aluminum extrusion mold design and machining control for rollpressing dimensions. In contrast, standard flattened heat pipes require an arched groove, which poses greater challengesfor aluminum extrusion mold design, cannot be processed by CNC, and requires wire cutting to adjust the groove shape, making it more difficult to manufacture.



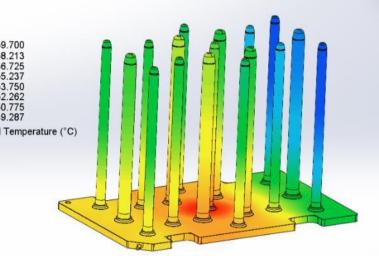
Thermal resistance <0.05° C/W @ 60CFM, approximately 4° C lower temperature rise compared to similar heat sinks



Standard flattened pipe: Side indentation s after roll-pressing

D-shaped pipe: No side indentation after roll-pressing


Rca (°C/W)

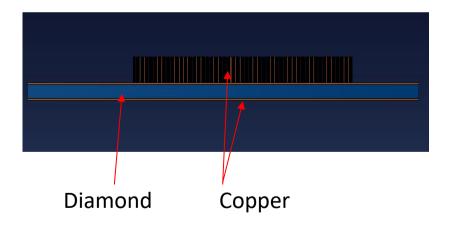

D-shaped pipe aluminum plate rectangular groove

High Heat Flux Density 3DVC

Develop high heat flux density (125W/cm ^ 2) 3D VC, Simulation design, 3D VC internal layout and design to ensure no dry burning under high heat flux density conditions. Project solution: 750W, chip area of 20 * 30mm.

	Power	DCU Die Top	DCU Die Centenr	НВМ А Тор	НВМ В Тор	НВМ С Тор	HBM D Top	Ambient temperature	DCU Die Thermal Resistance
Scheme 1	750W	66.925℃	68.503℃	59. 401 ℃	59. 38℃	59.613℃	59.626	43℃	0.034
Scheme 2	750W	66. 337℃	67.75℃	59.378℃	59.354℃	59. 584℃	59.601℃	43℃	0.033

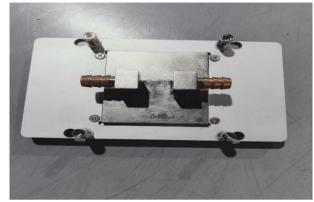
Currently, the heat flux density that the 3D VC module can solve is below 100W/cm ^ 2, and if it exceeds this heat flux density, it will dry burn. Goal: Improve the 3D VC Qmax and achieve a heat flux density of 125W/cm ^ 2 that the module can solve Expected: Under the condition of 750W module, the thermal resistance requirement is less than 0.04 °C/W Verification: We are currently discussing and verifying the internal layout and design of 3D VC, and expect to have a formal 3D VC solution by the end of May/June 2025

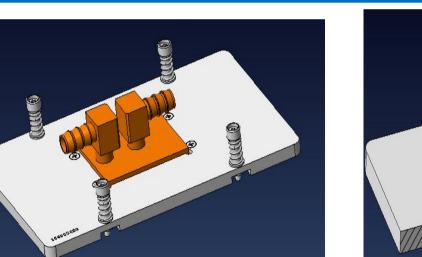


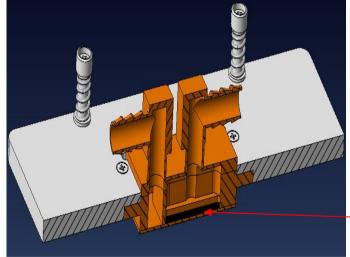
Diamond copper composite material skived fin bottom plate

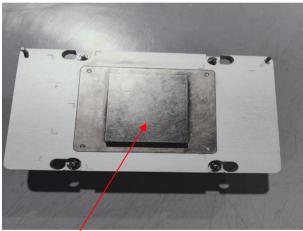
It is an isotropic lightweight thermal conductive composite material with high thermal conductivity and low thermal expansion coefficient. Its organizational structure consists of diamond powder and copper matrix made under high temperature and high pressure. It is suitable for chip packaging substrates, with high thermal conductivity and a thermal expansion coefficient that matches the chip. Its performance can be adjusted in a wide range to meet the needs of chip packaging.

性能		
指标	参数	单位
颜色	黄色	
尺寸规格	<200*200	mm
厚度	>0.3	mm
密度	5.8-7.0(±0.1)	g/cm ³
比热	430	J/kg.k
弯曲强度	>220	MPa
使用温度	-65~200	°C
热性能		
热导率	600-950	W/m⋅K
热膨胀系数	4-10	10-6/K

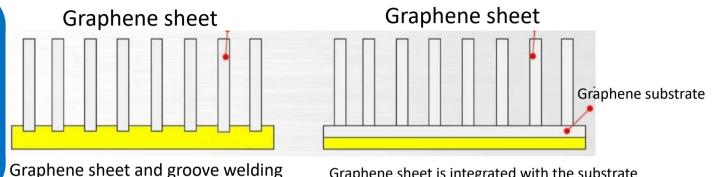



High Heat Flux Density Copper Cold Plate

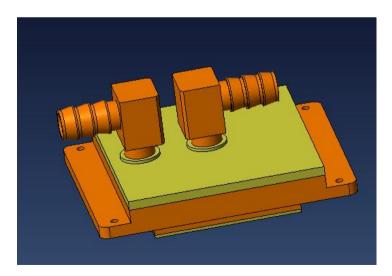


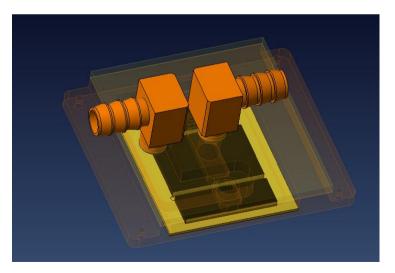

Application of diamond copper composite material skived fin in the design of high heat flux density copper cold plates

The thermal conductivity reaches 600-950W/mk, and the heat of the chip can be quickly conducted to the copper teeth through the diamond composite material at the bottom. Then, efficient heat exchange occurs between the liquid in the microchannel and the fin to improve heat dissipation efficiency and reduce thermal resistance. It is expected to achieve a power output of 1200W.

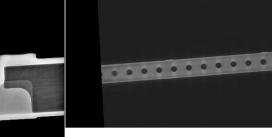

Diamond copper composite material skived fin bottom plate

High Heat Flux Density Copper Cold Plate 2

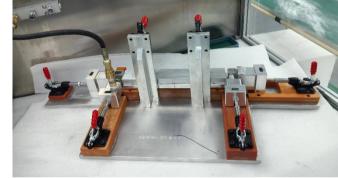



Using graphene copper composite material to skived fin

By utilizing the high thermal conductivity of graphene (500-600W/mk), heat is evenly distributed to the skived fin to reduce thermal resistance, as shown in the figure on the right. It is expected to achieve a power output of 1200W.


Graphene sheet is integrated with the substrate and then welded to the copper substrate

New Technology - Integrated Precision Casting Manifold


ELECTRONICS

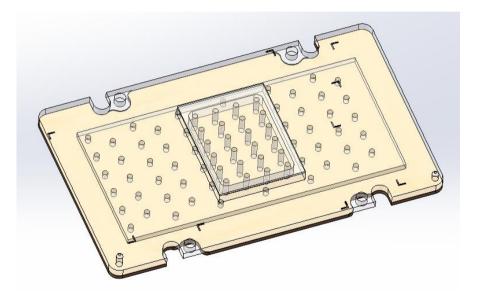
TONGYU

X-R slice image

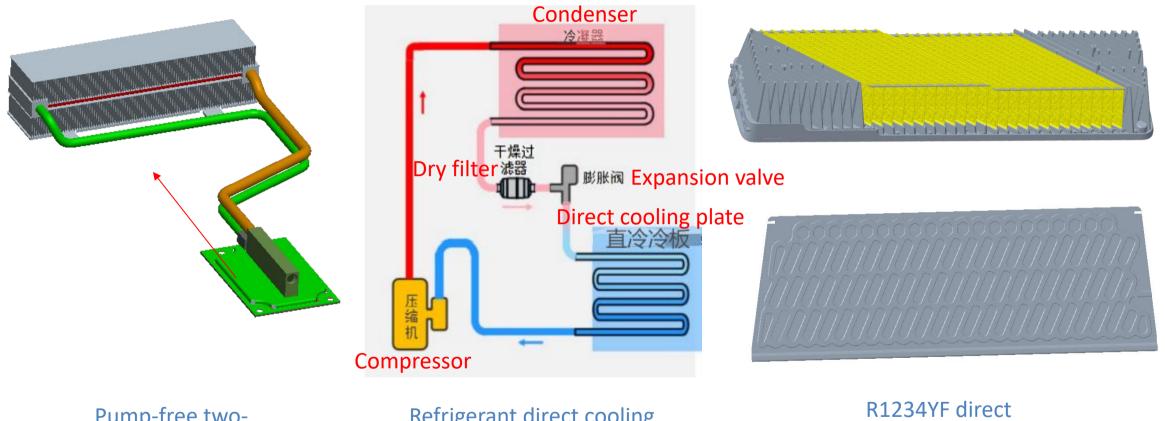
X-R perspective view

The main part of the product is integrated precision casting, the post-process processing is less, saving cost; Only the two ends of the cover need to be welded and sealed, the welding length is short, the precision casting process has less sand holes, and the reliability is high.

Additional equipment required: Laser welding machine, argon arc welding machine, high temperature vacuum brazing furnace

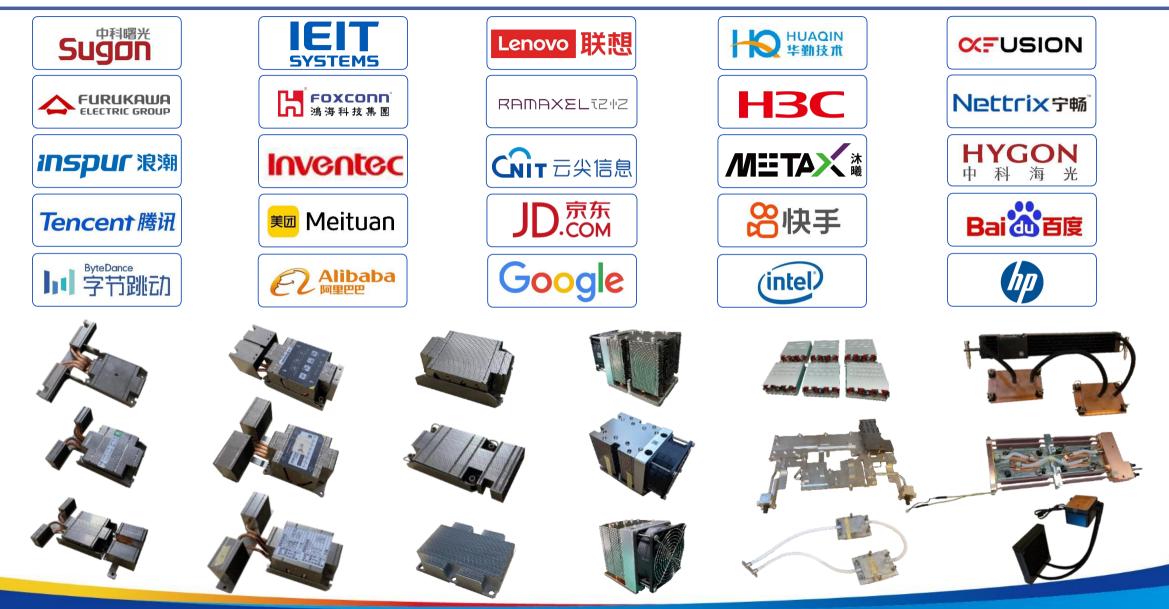

HIGH VACUUM BRAZING FURNAC

Air Tightness Test Drawing for Precision Cast Blanks


The bottom of the product is VC, and the top half is a liquid-cooled chamber. Using the fast soaking property of VC, the heat transmitted by the chip is quickly divided into the bottom of the entire water-cooled plate, and then the liquid is quickly exchanged to achieve the goal of reducing the thermal resistance.

New Solution - Refrigerant Straight Cold Plate

Pump-free twophase liquid cooling system Refrigerant direct cooling system schematic


R1234YF direct cooling plate

Our Partner

PC / Server

Vehicle

Future Development Plans

Optimization of Production Base Layout

Build a world-class manufacturing base for heat dissipation products

New energy/vehicle mounted liquid cooling production line

Scientific planning; Reasonable division of labor

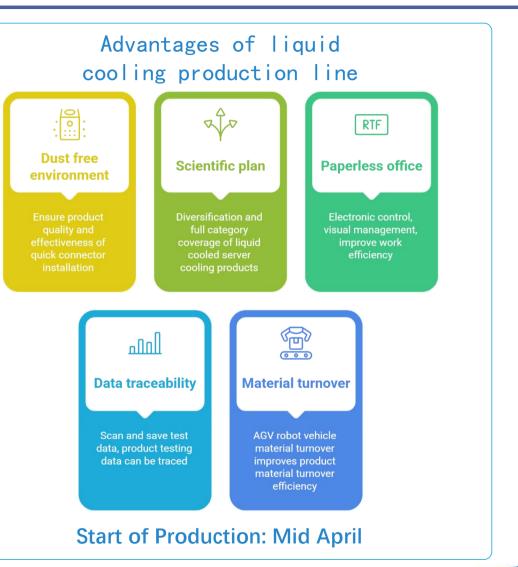
New factory planning

 Implement vehicle mounted liquid cooling product lines and server liquid cooling production lines in a layered manner.

Capacity expansion of liquid cooling factory

• Build a domestic first-class data center liquid cooling product production base

Server liquid cooling production line


Vehicle Mounted Dedicated Line Planning

Class 100.000 cleanroom

- Floor area: 2800 square meters
 Number of production lines: 3
- Monthly production capacity: 30k
- Annual production capacity: 360K

Vehicle Mounted Dedicated Line Planning

Vehicle mounted product dedicated line planning

Add new equipment

- CNC Machine Tools: 100 units (High-precision, High-efficiency Machining)
- Die Casting Machines: 10 units (High-strength Aluminum Alloy Component Molding)
- Friction Stir Welding Equipment: 20 units (High-strength, Low-deformation Joining)

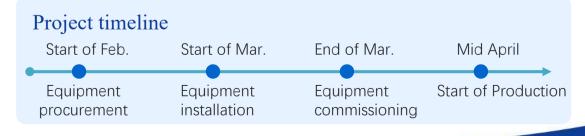
Capacity planning

- Daily production capacity: 12K
- Monthly production capacity: 360K

Quality control

• ISO/TS 16949 certification standard | Full process automated testing system

Floor area: 8000 square meters


CNC Machining Area

Die Casting Area

Upgrade Smart Manufacturing & Promote Automation Transformation

1. Equipment Upgrades:

Laser welding and vacuum brazing equipment are scheduled for delivery by the end of February. High-precision reflow soldering: temperature control within $\pm 3^{\circ}$ C.

 Increase automation targets for liquid cooling and air cooling to over 50%. Ensure delivery schedules and optimize costs.

High-precision reflow soldering production line

Vacuum Brazing Furnace

Automatic loading robot

3D Roller Tube Machine

Automatic Back Adhesive Labeling Machine

THANKS!

Tel: +86-769-26626558

Web: www.tongyucooler.com

Email: info@tongyu-group.com

Add: No. 5, Chuangye Road, Dongkeng Village, Dongkeng Town, Dongguan City, Guangdong Province, 523800, China.

GLCOBAL THERMAL SOLUTIONS PROVIDER AND SUPPLIER